数据结构之二分法查找、快速排序思想与实现

时间:2021-12-03 22:10:28

 最近总是在想着,如何去设计,如何更好的编码,更充分地体会面向对象的思想,也刻意往这方面去学习。写了几年代码,也改总结总结,发现最重要的还是在与思考。重温了一下《程序设计实践》这本书,进一步规范反思下自己写的代码风格、质量、性能、可移植性等。对了数据结构这方面的知识与算法进一步巩固。下面写笔试经常遇见的算法:二分法查找、快速排序算法。实现算法其关键在于实现的思想。

(一)二分法查找
二分法查找其实就是折半查找,一种效率较高的查找方法。针对有需数组来查找的。
主要思想是:(设查找的数组期间为array[low, high])
(1)确定该期间的中间位置K
(2)将查找的值T与array[k]比较。若相等,查找成功返回此位置;否则确定新的查找区域,继续二分查找。区域确定如下:
a.array[k]>T 由数组的有序性可知array[k,k+1,……,high]>T;故新的区间为array[low,……,K-1]
b.array[k]<T 类似上面查找区间为array[k+1,……,high]。每一次查找与中间值比较,可以确定是否查找成功,不成功当前查找区间缩小一半。递归找,即可。

时间复杂度:O(log2n);

代码实现:
        /// <summary>
        /// 二分法查找
        /// </summary>
        /// <param name="array">目标数组(已经排序好了)</param>
        /// <param name="a">查找的数</param>
        /// <returns>目标数的索引</returns>
        public int BinarySearch(int[] array, int T)
        {
            int low, high, mid;
            low = 0;
            high = array.Length - 1;
            while (low <= high)
            {
                mid = (low + high) / 2;
                if (array[mid] < T)
                {
                    low = mid + 1;
                }
                else if (array[mid]>T)
                {
                    high = mid - 1;
                }
                else 
                {
                    return mid;
                }
            }
            return -1;
        }

(二)快速排序算法
快速排序是尽量避免额外计算的极好例子.其工作方式是在数组中划分出小的和大的元素
基本思想是:
从数组中取出一个元素作为基准值
把其他元素分为两组:
“小的”是那些小于基准值的元素。
“大的”是那些大于基准值的元素,
递归对这两个组做排序。
快速排序快速的原因在于:一旦知道了某个元素比基准值小,它就不需要在与那些大的元素比较。而大的元素也不需要在与小的元素比较,这个性质使快速排序比简单排序、冒泡排序快的多。

时间复杂度:O(nlogn)
代码实现:
        /// <summary>
        /// 快速排序
        /// </summary>
        /// <param name="array"></param>
        /// <param name="left"></param>
        /// <param name="right"></param>
        public void QuickSort(int[] array,int left,int right)
        {
            int last;
            if (left>=right)
                return;
            int rand = (left+right)/2;
            Swap(array, left, rand);
            last = left;
            for (int i = left + 1; i <= right; i++)
            {
                if (array[i] < array[left])
                    Swap(array, ++last, i);
            }
            Swap(array, left, last);
            QuickSort(array, left, last - 1);
            QuickSort(array, last + 1, right);
        }

        /// <summary>
        /// 交换两个值
        /// </summary>
        /// <param name="a"></param>
        /// <param name="i"></param>
        /// <param name="j"></param>
        private void Swap(int[] a,int i,int j)
        {
            int temp;
            temp = a[i];
            a[i] = a[j];
            a[j] = temp;
        }