4 seconds
256 megabytes
standard input
standard output
Bob has a favorite number k and ai of
length n. Now he asks you to answer m queries.
Each query is given by a pair li and ri and
asks you to count the number of pairs of integers i and j,
such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, ..., aj is
equal to k.
The first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) —
the length of the array, the number of queries and Bob's favorite number respectively.
The second line contains n integers ai (0 ≤ ai ≤ 1 000 000) —
Bob's array.
Then m lines follow. The i-th
line contains integers li and ri (1 ≤ li ≤ ri ≤ n) —
the parameters of the i-th query.
Print m lines, answer the queries in the order they appear in the input.
6 2 3
1 2 1 1 0 3
1 6
3 5
7
0
5 3 1
1 1 1 1 1
1 5
2 4
1 3
9
4
4
题意:给你n个数和m个询问以及k,每个询问给一个区间[l,r],问区间内有多少对(i,j),使得a[i]^a[i+1]^a[i+2]^...^a[j]=k.
思路:我们可以求出前缀异或和a[i],那么题目就变成问区间[l,r]内,有多少对(i,j)满足a[i-1]^a[j]=k,我们可以用cnt[i]记录异或值为i的个数,然后就能用莫队算法了。
#include<stdio.h>
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
typedef __int64 ll;
#define inf 99999999
#define pi acos(-1.0)
#define maxn 100050
ll a[maxn],sum[maxn],unit;
struct node{
ll l,r,idx;
}b[maxn];
bool cmp(node a,node b){
if(a.l/unit == b.l/unit){
return a.r < b.r;
}
return a.l/unit < b.l/unit;
}
ll cnt[1050000];
ll ans[maxn];
int main()
{
ll n,m,k;
int i,j;
while(scanf("%I64d%I64d%I64d",&n,&m,&k)!=EOF)
{
a[0]=0;
for(i=1;i<=n;i++){
scanf("%I64d",&a[i]);
a[i]=a[i-1]^a[i];
}
unit=(ll)sqrt(n);
for(i=1;i<=m;i++){
scanf("%I64d%I64d",&b[i].l,&b[i].r);
b[i].idx=i;
}
sort(b+1,b+1+m,cmp);
ll l=1,r=0;
ll num=0;
memset(cnt,0,sizeof(cnt));
cnt[0]=1; //这里要注意,一开始cnt[0]=0
for(i=1;i<=m;i++){ //对于询问区间[l,r],相当于在维护【a[l-1],a[r]】出现的次数。
while(r<b[i].r){ //每个while语句里的前后顺序要注意
r++;
num+=cnt[k^a[r] ];
cnt[a[r] ]++;
}
while(r>b[i].r){
cnt[a[r] ]--;
num-=cnt[k^a[r] ];
r--;
}
while(l<b[i].l){
cnt[a[l-1] ]--;
num-=cnt[k^a[l-1] ];
l++;
}
while(l>b[i].l){
l--;
num+=cnt[k^a[l-1] ];
cnt[a[l-1] ]++;
}
ans[b[i].idx ]=num;
}
for(i=1;i<=m;i++){
printf("%I64d\n",ans[i]);
}
}
return 0;
}