http://acm.hdu.edu.cn/showproblem.php?pid=1099
最最简单的概率dp,完全是等概率转移。
设dp[i]为已有i张票,还需要抽几次才能集齐的期望。
那么dp[n]=0,因为我们已经集齐了。
\[dp[i]=(\frac{i}{n}*dp[i]+\frac{n-i}{n}*dp[i+1])+1
\]
\]
移项得答案。
然后写个分数类,注意约分。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
struct Fraction{
ll fz;
ll fm;
Fraction(){}
Fraction(ll z,ll m):fz(z),fm(m){}
Fraction operator+(Fraction f){
ll m=fm/__gcd(fm,f.fm)*f.fm;
Fraction res;
res.fz=fz*(m/fm)+f.fz*(m/f.fm);
res.fm=m;
res.tf();
return res;
}
Fraction operator-(Fraction f){
ll m=fm/__gcd(fm,f.fm)*f.fm;
Fraction res;
res.fz=fz*(m/fm)-f.fz*(m/f.fm);
res.fm=m;
res.tf();
return res;
}
Fraction operator*(Fraction f){
Fraction res;
res.fz=fz*f.fz;
res.fm=fm*f.fm;
res.tf();
return res;
}
void tf(){
ll g=__gcd(fz,fm);
fz/=g;
fm/=g;
}
void show(){
ll zs=fz/fm;
ll ys=fz%fm;
if(ys==0){
cout<<zs<<endl;
}
else{
string l1,l2,l3;
l1=" ";
l2=" ";
l3=" ";
while(zs){
l2=char(zs%10+'0')+l2;
zs/=10;
l1+=" ";
l3+=" ";
}
ll cfm=fm;
string n3="";
string n2="";
while(cfm){
n3=char(cfm%10+'0')+n3;
cfm/=10;
n2+="-";
}
l3+=n3;
l2+=n2;
string n1="";
ll cfz=ys;
while(cfz){
n1=char(cfz%10+'0')+n1;
cfz/=10;
}
l1+=n1;
cout<<l1<<endl<<l2<<endl<<l3<<endl;
}
}
};
Fraction dp[23];
int main(){
int n;
while(cin>>n){
dp[n]=Fraction(0,1);
for(int i=n-1;i>=0;i--){
dp[i]=dp[i+1]+Fraction(n,n-i);
}
dp[0].show();
}
}