SQL Server 类似正则表达式的字符处理问题

时间:2024-12-17 09:37:56

SQL Serve提供了简单的字符模糊匹配功能,比如:like, patindex,不过对于某些字符处理场景还显得并不足够,日常碰到的几个问题有:

  • 1. 同一个字符/字符串,出现了多少次
  • 2. 同一个字符,第N次出现的位置
  • 3. 多个相同字符连续,合并为一个字符
  • 4. 是否为有效IP/身份证号/手机号等
  • 5. 去除所有数字/字母

 

同一个字符/字符串,出现了多少次

同一个字符,将其替换为空串,即可计算

declare @text varchar(1000)
declare @str varchar(10)
set @text = 'ABCBDBE'
set @str = 'B' select len(@text) - len(replace(@text,@str,''))

同一个字符串,仍然是替换,因为是多个字符,方法1替换后需要做一次除法;方法2替换时增加一个字符,则不需要

--方法1
declare @text varchar(1000)
declare @str varchar(10)
set @text = 'ABBBCBBBDBBBE'
set @str = 'BBB' select (len(@text) - len(replace(@text,@str,'')))/len(@str) --方法2
declare @text varchar(1000)
declare @str varchar(10)
set @text = 'ABBBCBBBDBBBE'
set @str = 'BBB' select len(replace(@text,@str,@str+'_')) - len(@text)

同一个字符/字符串,第N次出现的位置

SQL SERVER定位字符位置的函数为CHARINDEX:

CHARINDEX ( expressionToFind , expressionToSearch [ , start_location ] )

可以从指定位置起开始检索,但是不能取第N次出现的位置,需要自己写SQL来补充,有以下几种思路:

1. 自定义函数, 循环中每次为charindex加一个计数,直到为N

if object_id('NthChar','FN') is not null
drop function Nthchar
GO create function NthChar
(
@source_string as nvarchar(4000),
@sub_string as nvarchar(1024),
@nth as int
)
returns int
as
begin
declare @postion int
declare @count int set @postion = CHARINDEX(@sub_string, @source_string)
set @count = 0 while @postion > 0
begin
set @count = @count + 1
if @count = @nth
begin
break
end
set @postion = CHARINDEX(@sub_string, @source_string, @postion + 1)
End
return @postion
end
GO --select dbo.NthChar('abcabc','abc',2)
--

2. 通过CTE,对待处理的整个表字段操作, 递归中每次为charindex加一个计数,直到为N

if  object_id('tempdb..#T') is not null
drop table #T create table #T
(
source_string nvarchar(4000)
) insert into #T values (N'我们我们')
insert into #T values (N'我我哦我') declare @sub_string nvarchar(1024)
declare @nth int
set @sub_string = N'我们'
set @nth = 2 ;with T(source_string, starts, pos, nth)
as (
select source_string, 1, charindex(@sub_string, source_string), 1 from #t
union all
select source_string, pos + 1, charindex(@sub_string, source_string, pos + 1), nth+1 from T
where pos > 0
)
select
source_string, pos, nth
from T
where pos <> 0
and nth = @nth
order by source_string, starts --source_string pos nth
--我们我们 3 2

3. 借助数字表 (tally table),到不同起点位置去做charindex,需要先自己构造个数字表

--numbers/tally table
IF EXISTS (select * from dbo.sysobjects where id = object_id(N'[dbo].[Numbers]') and OBJECTPROPERTY(id, N'IsUserTable') = 1)
DROP TABLE dbo.Numbers --===== Create and populate the Tally table on the fly
SELECT TOP 1000000
IDENTITY(int,1,1) AS number
INTO dbo.Numbers
FROM master.dbo.syscolumns sc1,
master.dbo.syscolumns sc2 --===== Add a Primary Key to maximize performance
ALTER TABLE dbo.Numbers
ADD CONSTRAINT PK_numbers_number PRIMARY KEY CLUSTERED (number) --===== Allow the general public to use it
GRANT SELECT ON dbo.Numbers TO PUBLIC --以上数字表创建一次即可,不需要每次都重复创建 DECLARE @source_string nvarchar(4000),
@sub_string nvarchar(1024),
@nth int
SET @source_string = 'abcabcvvvvabc'
SET @sub_string = 'abc'
SET @nth = 2 ;WITH T
AS
(
SELECT ROW_NUMBER() OVER(ORDER BY number) AS nth,
number AS [Position In String]
FROM dbo.Numbers n
WHERE n.number <= LEN(@source_string)
AND CHARINDEX(@sub_string, @source_string, n.number)-number = 0
----OR
--AND SUBSTRING(@source_string,number,LEN(@sub_string)) = @sub_string
)
SELECT * FROM T WHERE nth = @nth

4. 通过CROSS APPLY结合charindex,适用于N值较小的时候,因为CROSS APPLY的次数要随着N的变大而增加,语句也要做相应的修改

declare @T table
(
source_string nvarchar(4000)
) insert into @T values
('abcabc'),
('abcabcvvvvabc') declare @sub_string nvarchar(1024)
set @sub_string = 'abc' select source_string,
p1.pos as no1,
p2.pos as no2,
p3.pos as no3
from @T
cross apply (select (charindex(@sub_string, source_string))) as P1(Pos)
cross apply (select (charindex(@sub_string, source_string, P1.Pos+1))) as P2(Pos)
cross apply (select (charindex(@sub_string, source_string, P2.Pos+1))) as P3(Pos)

5. 在SSIS里有内置的函数,但T-SQL中并没有

--FINDSTRING in SQL Server 2005 SSIS
FINDSTRING([yourColumn], "|", 2), --TOKEN in SQL Server 2012 SSIS
TOKEN(Col1,"|",3)

注:不难发现,这些方法和字符串拆分的逻辑是类似的,只不过一个是定位,一个是截取,如果要获取第N个字符左右的一个/多个字符,有了N的位置,再结合substring去截取即可;

多个相同字符连续,合并为一个字符

最常见的就是把多个连续的空格合并为一个空格,解决思路有两个:

1. 比较容易想到的就是用多个replace

但是究竟需要replace多少次并不确定,所以还得循环多次才行

--把两个连续空格替换成一个空格,然后循环,直到charindex检查不到两个连续空格
declare @str varchar(100)
set @str='abc abc kljlk kljkl'
while(charindex(' ',@str)>0)
begin
select @str=replace(@str,' ',' ')
end
select @str

2. 按照空格把字符串拆开

对每一段拆分开的字符串trim或者replace后,再用一个空格连接,有点繁琐,没写代码示例,如何拆分字符串可参考:“第N次出现的位置”;

是否为有效IP/身份证号/手机号等

类似IP/身份证号/手机号等这些字符串,往往都有自身特定的规律,通过substring去逐位或逐段判断是可以的,但SQL语句的方式往往性能不佳,建议尝试正则函数,见下。

去除所有数字/字母

上面定位第N个字符的方式也都可以尝试使用,只是在定位的同时将数字/字母替换掉即可;

另外也可以通过模糊匹配来做:

--去除所有非数字
declare @pos smallint
declare @string varchar(100) set @string = '1109A><":{$%^&*4DSE2@!~$%^&567KJHGT' --如果是1102e53这样的字符串,会被isnumeric认为是科学计数法数字,加上e0就会返回0
--如果是普通数字,加上e0也不会影响返回1
while isnumeric(@string+'e0') = 0 --也可同下用patindex判断
begin
set @pos = (select patindex('%[^0-9]%',@string))
set @string = (select replace(@string,substring(@string,@pos,1),''))
end select @string --去除所有数字
declare @pos smallint
declare @string varchar(100) set @string = '1109A><":{$%^&*4DSE2@!~$%^&567KJHGT' while patindex('%[0-9]%',@string) > 0
begin
set @pos = (select patindex('%[0-9]%',@string))
set @string = (select replace(@string,substring(@string,@pos,1),''))
end select @string --去除所有字母
declare @pos smallint
declare @string varchar(100) set @string = '1109A><":{$%^&*4DSE2@!~$%^&567KJHGT' while patindex('%[A-Za-z]%',@string) > 0
begin
set @pos = (select patindex('%[A-Za-z]%',@string))
set @string = (select replace(@string,substring(@string,@pos,1),''))
end select @string

正则表达式函数

1. Oracle

从10g开始,可以在查询中使用正则表达式,它通过一些支持正则表达式的函数来实现:

Oracle 10 g

REGEXP_LIKE

REGEXP_REPLACE

REGEXP_INSTR

REGEXP_SUBSTR

Oracle 11g (新增)

REGEXP_COUNT

Oracle用REGEXP函数处理上面几个问题:

(1) 同一个字符/字符串,出现了多少次

select length(regexp_replace('123-345-566', '[^-]', '')) from dual;
select REGEXP_COUNT('123-345-566', '-') from dual; --Oracle 11g

(2) 同一个字符/字符串,第N次出现的位置

不需要正则,ORACLE的instr可以直接查找位置:

instr('source_string','sub_string' [,n][,m])

n表示从第n个字符开始搜索,缺省值为1,m表示第m次出现,缺省值为1。

select instr('abcdefghijkabc','abc', 1, 2) position from dual; 

(3) 多个相同字符连续,合并为一个字符

select regexp_replace(trim('agc f   f  '),'\s+',' ') from dual;

(4) 是否为有效IP/身份证号/手机号等

--是否为有效IP
WITH IP
AS(
SELECT '10.20.30.40' ip_address FROM dual UNION ALL
SELECT 'a.b.c.d' ip_address FROM dual UNION ALL
SELECT '256.123.0.254' ip_address FROM dual UNION ALL
SELECT '255.255.255.255' ip_address FROM dual
)
SELECT *
FROM IP
WHERE REGEXP_LIKE(ip_address, '^(([0-9]{1}|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])\.){3}([0-9]{1}|[0-9][0-9]|1[0-9][0-9]|2[0-4][0-9]|25[0-5])$');
--是否为有效身份证/手机号,暂未举例

(5) 去除所有数字/字母

--去除非数字
SELECT regex_replace('1109A><":{$%^&*4DSE2@!~$%^&567KJHGT','[^0-9]','') FROM dual; --去除数字
SELECT regex_replace('1109A><":{$%^&*4DSE2@!~$%^&567KJHGT','[0-9]','') FROM dual; --去除字母
SELECT regex_replace('1109A><":{$%^&*4DSE2@!~$%^&567KJHGT','[A-Za-z]','') FROM dual;

2. SQL Server

目前最新版本为SQL Server 2017,还没有对REGEXP函数的支持,需要通用CLR来扩展,如下为CLR实现REG_REPLACE:

--1. 开启 CLR
EXEC sp_configure 'show advanced options' , ''
GO
RECONFIGURE
GO
EXEC sp_configure 'clr enabled' , ''
GO
RECONFIGURE
GO
EXEC sp_configure 'show advanced options' , '';
GO
--首次创建时,应该是从dll文件创建
--CREATE ASSEMBLY [RegexUtility] FROM 'C:\xxxxxxx.dll'
--GO --创建好后,可以生成脚本出来部署到其他支持CLR的SQL Server上
CREATE ASSEMBLY [RegexUtility]
FROM 0x4D5A90000300000004000000FFFF0000B800000000000000400000000000000000000000000000000000000000000000000000000000000000000000800000000E1FBA0E00B409CD21B8014CCD21546869732070726F6772616D2063616E6E6F742062652072756E20696E20444F53206D6F64652E0D0D0A2400000000000000504500004C0103002073E9470000000000000000E0000E210B010800000A00000006000000000000EE2900000020000000400000000040000020000000020000040000000000000004000000000000000080000000020000000000000300400500001000001000000000100000100000000000001000000000000000000000009C2900004F000000004000003803000000000000000000000000000000000000006000000C00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000080000000000000000000000082000004800000000000000000000002E74657874000000F409000000200000000A000000020000000000000000000000000000200000602E72737263000000380300000040000000040000000C0000000000000000000000000000400000402E72656C6F6300000C0000000060000000020000001000000000000000000000000000004000004200000000000000000000000000000000D0290000000000004800000002000500EC200000B008000001000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007A0F00280E00000A0F01280E00000A280F00000A6F1000000A281100000A2A001330030047000000010000110F01280E00000A731200000A0A060F00280E00000A6F1300000A6F1000000A2C200F00280E00000A0F01280E00000A0F02280E00000A281400000A281500000A2A7E1600000A2A820F00280E00000A0F01280E00000A0F02280E00000A281400000A281500000A2A1E02281800000A2A42534A4201000100000000000C00000076322E302E35303732370000000005006C0000007C020000237E0000E8020000F402000023537472696E677300000000DC0500000800000023555300E4050000100000002347554944000000F4050000BC02000023426C6F620000000000000002000001471502000900000000FA0133001600000100000014000000020000000400000008000000180000000D00000001000000010000000300000000000A000100000000000600380031000A0060004B000A006B004B000600B900A7000600F100D20006000501A70006001E01A70006003901A70006005401A70006006D01A70006008601A7000600A501A7000600C201A7000600F901D90106001902D9010A00520237020E009E027F020E00A4027F020E00AA027F020A00E10237020000000001000000000001000100010010001B000000050001000100502000000000960075000A0001007020000000009600800013000300C3200000000096008D0013000600E420000000008618A1001E000900000001006702000002006D02000001006702000002006D0200000300C802000001006702000002006D0200000300C8022100A10022002900A10027003100A10022003900A10022004100A10022004900A10022005100A10022005900A10022006100A10022006900A10022007100A1002C007900A1001E008100A1001E0019007502D5008900A402D9009900B002E0001100BC02E4008900A10022008900A402EA008900D402F0001900BC02F7001900DC02FD00A100A1001E000900A1001E0020006B0031002E0033007F022E003B0079022E0063009A022E00230079022E002B0079022E00430079022E00130079022E004B0079022E0053007F022E005B00910240006B0031006000BB00060101010480000001000000BE0B28760000000000001B000000020000000000000000000000010028000000000002000000000000000000000001003F0000000000020000000000000000000000010031000000000000000000003C4D6F64756C653E0052656765785574696C6974792E646C6C0052656765785574696C697479006D73636F726C69620053797374656D004F626A6563740053797374656D2E446174610053797374656D2E446174612E53716C54797065730053716C426F6F6C65616E0053716C537472696E670052656765784D617463680052656765785265706C6163650052656765785265706C61636544656661756C74002E63746F720053797374656D2E5265666C656374696F6E00417373656D626C7956657273696F6E4174747269627574650053797374656D2E52756E74696D652E496E7465726F70536572766963657300436F6D56697369626C6541747472696275746500417373656D626C7943756C7475726541747472696275746500417373656D626C7954726164656D61726B41747472696275746500417373656D626C79436F7079726967687441747472696275746500417373656D626C7950726F6475637441747472696275746500417373656D626C79436F6D70616E7941747472696275746500417373656D626C79436F6E66696775726174696F6E41747472696275746500417373656D626C794465736372697074696F6E41747472696275746500417373656D626C795469746C654174747269627574650053797374656D2E52756E74696D652E436F6D70696C6572536572766963657300436F6D70696C6174696F6E52656C61786174696F6E734174747269627574650052756E74696D65436F6D7061746962696C697479417474726962757465004D6963726F736F66742E53716C5365727665722E5365727665720053716C46756E6374696F6E41747472696275746500696E707574007061747465726E006765745F56616C75650053797374656D2E546578742E526567756C617245787072657373696F6E73005265676578004D617463680047726F7570006765745F53756363657373006F705F496D706C69636974007265706C6163656D656E74005265706C616365004E756C6C0053716C4D6574686F64417474726962757465000003200000000000253F930E81E4D84AAC7FD0EB9C3404A30008B77A5C561934E0890800021109110D110D0A0003110D110D110D110D03200001042001010E0420010102042001010880A20100020054020F497344657465726D696E6973746963015455794D6963726F736F66742E53716C5365727665722E5365727665722E446174614163636573734B696E642C2053797374656D2E446174612C2056657273696F6E3D322E302E302E302C2043756C747572653D6E65757472616C2C205075626C69634B6579546F6B656E3D623737613563353631393334653038390A44617461416363657373000000000320000E06000212490E0E0320000205000111090205200112490E0600030E0E0E0E050001110D0E0306110D040701124581710100060054020F497344657465726D696E6973746963015402094973507265636973650154020A4F6E4E756C6C43616C6C005455794D6963726F736F66742E53716C5365727665722E5365727665722E446174614163636573734B696E642C2053797374656D2E446174612C2056657273696F6E3D322E302E302E302C2043756C747572653D6E65757472616C2C205075626C69634B6579546F6B656E3D623737613563353631393334653038390A446174614163636573730000000054557F4D6963726F736F66742E53716C5365727665722E5365727665722E53797374656D446174614163636573734B696E642C2053797374656D2E446174612C2056657273696F6E3D322E302E302E302C2043756C747572653D6E65757472616C2C205075626C69634B6579546F6B656E3D623737613563353631393334653038391053797374656D4461746141636365737300000000540E044E616D651572656765785F7265706C6163655F64656661756C740501000000001101000C52656765785574696C69747900000801000800000000001E01000100540216577261704E6F6E457863657074696F6E5468726F777301000000C42900000000000000000000DE290000002000000000000000000000000000000000000000000000D0290000000000000000000000005F436F72446C6C4D61696E006D73636F7265652E646C6C0000000000FF250020400000000000000000000000000000000000000000000000000000000100100000001800008000000000000000000000000000000100010000003000008000000000000000000000000000000100000000004800000058400000E00200000000000000000000E00234000000560053005F00560045005200530049004F004E005F0049004E0046004F0000000000BD04EFFE00000100000001002876BE0B000001002876BE0B3F000000000000000400000002000000000000000000000000000000440000000100560061007200460069006C00650049006E0066006F00000000002400040000005400720061006E0073006C006100740069006F006E00000000000000B00440020000010053007400720069006E006700460069006C00650049006E0066006F0000001C020000010030003000300030003000340062003000000044000D000100460069006C0065004400650073006300720069007000740069006F006E0000000000520065006700650078005500740069006C006900740079000000000040000F000100460069006C006500560065007200730069006F006E000000000031002E0030002E0033003000300036002E00330030003200340038000000000044001100010049006E007400650072006E0061006C004E0061006D0065000000520065006700650078005500740069006C006900740079002E0064006C006C00000000002800020001004C006500670061006C0043006F0070007900720069006700680074000000200000004C00110001004F0072006900670069006E0061006C00460069006C0065006E0061006D0065000000520065006700650078005500740069006C006900740079002E0064006C006C00000000003C000D000100500072006F0064007500630074004E0061006D00650000000000520065006700650078005500740069006C006900740079000000000044000F000100500072006F006400750063007400560065007200730069006F006E00000031002E0030002E0033003000300036002E00330030003200340038000000000048000F00010041007300730065006D0062006C0079002000560065007200730069006F006E00000031002E0030002E0033003000300036002E0033003000320034003800000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000C000000F03900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
WITH PERMISSION_SET = SAFE GO
--3. 创建 CLR 函数
CREATE FUNCTION [dbo].[regex_replace](@input [nvarchar](4000), @pattern [nvarchar](4000), @replacement [nvarchar](4000))
RETURNS [nvarchar](4000) WITH EXECUTE AS CALLER, RETURNS NULL ON NULL INPUT
AS
EXTERNAL NAME [RegexUtility].[RegexUtility].[RegexReplaceDefault]
GO
--4. 使用regex_replace替换多个空格为一个空格
select dbo.regex_replace('agc f f ','\s+',' ');
--5. 使用regex_replace去除数字/字母
--去除非数字
select dbo.regex_replace('1109A><":{$%^&*4DSE2@!~$%^&567KJHGT','[^0-9]',''); --去除数字
select dbo.regex_replace('1109A><":{$%^&*4DSE2@!~$%^&567KJHGT','[0-9]',''); --去除字母
select dbo.regex_replace('1109A><":{$%^&*4DSE2@!~$%^&567KJHGT','[A-Za-z]','');

注:通过CLR实现更多REGEXP函数,如果有高级语言开发能力,可以自行开发;或者直接使用一些开源贡献也行,比如:http://devnambi.com/2016/sql-server-regex/

简单的正则表达式符号使用说明:

\f -> 匹配一个换页

\n -> 匹配一个换行符

\r -> 匹配一个回车符

\t -> 匹配一个制表符

\v -> 匹配一个垂直制表符

\s 匹配任何空白字符,包括空格、制表符、换页符等等, 等价于[ \f\n\r\t\v]

\s+ 匹配任意多个空白字符

\S 匹配非空白字符

^ 匹配最前边的字符

$ 与^类似,匹配最末的字符

+ 匹配+号前面的字符1次或n次.等价于{1,}

* 匹配*前面的字符0次或n次

? 匹配?前面的字符0次或1次

. (小数点)匹配除换行符外的所有单个的字符

小结:

1. 非正则SQL语句的思路,对不同数据库往往都适用;

2. 正则表达式中的规则(pattern) 在不同开发语言里,有很多语法是相通的,通常是遵守perl或者linux shell中的sed等工具的规则;

3. 从性能上来看,非循环写法的通用SQL判断 > REGEXP函数 > 自定义SQL函数;

4. SQL SERVER 除了CLR的方式扩展正则表达式函数,也可以开启OLE Automation通过VBS来扩展正式表达式函数,曾经测试过性能,比CLR要差很多。

参考:

regular expression enhancements in 11g

http://www.oracle-developer.net/display.php?id=508

Using Regular Expressions With Oracle Database

https://docs.oracle.com/cd/B12037_01/appdev.101/b10795/adfns_re.htm

Replace non numeric characters in string

https://www.sqlservercentral.com/Forums/Topic470379-338-1.aspx

IsNumeric, IsInt, IsNumber

https://www.tek-tips.com/faqs.cfm?fid=6423

原文