题目大意
一个nxm的地图,地图上的横纵交错成nxm个交叉点,其中有k个交叉点为房间,k个交叉点为k个小人的初始位置。小人可以在地图上沿着水平或垂直方向行走,每走一步的代价为1。求这k个小人分别到达k个不同的房间,所花费的总代价的最小值。
题目分析
k个小人走到k个房间节点,走出k条不同的路径,形成一个网络,求出花费最少的k条路径。每个房间只能容纳一个小人,视为小人节点到房间节点的路径上的容量为1,这样就不会出现多个小人挤到同一个房间。那么可以将问题转化为网络流:
添加源点s和汇点t,从s出发引出k条边分别到达k个小人,边的容量为1,费用为0;从k个房间节点分别引出一条边到达t,边的容量为1,费用为0;从k个小人节点分别引出k条边达到k个房间节点,边的容量为1,单位费用为小人到房间的最短距离。这样就构造出了一个网络流图,然后求解从源点s到达汇点t的最小费用最大流。
ps:这种有限制条件(比如容量有限制)的问题可以考虑转化为网络流。
实现(c++)
#include<stdio.h>
#include<string.h>
#include<queue>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
#define INF 1 << 25
#define MAX_NODE 220
#define MAX_EDGE_NUM 40005
#define min(a, b) a<b?a:b
struct Edge{
int to;
int vol;
int cost;
int next;
};
Edge gEdges[MAX_EDGE_NUM];
int gPre[MAX_NODE];
int gPath[MAX_NODE];
int gDist[MAX_NODE];
int gHead[MAX_NODE];
int gEdgeCount;
void InsertEdge(int u, int v, int vol, int cost){
gEdges[gEdgeCount].to = v;
gEdges[gEdgeCount].vol = vol;
gEdges[gEdgeCount].cost = cost;
gEdges[gEdgeCount].next = gHead[u];
gHead[u] = gEdgeCount++; gEdges[gEdgeCount].to = u;
gEdges[gEdgeCount].vol = 0;
gEdges[gEdgeCount].cost = -cost;
gEdges[gEdgeCount].next = gHead[v];
gHead[v] = gEdgeCount++;
}
//spfa算法求最短路(即增广单位费用最小的从源到汇的路径)
bool Spfa(int s, int t){
memset(gDist, 0x7F, sizeof(gDist));
memset(gPre, -1, sizeof(gPre));
gDist[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty()){
int u = Q.front();
Q.pop();
for (int e = gHead[u]; e != -1; e = gEdges[e].next){
int v = gEdges[e].to;
if (gEdges[e].vol > 0 && gDist[v] > gDist[u] + gEdges[e].cost){
gDist[v] = gDist[u] + gEdges[e].cost;
gPre[v] = u;
gPath[v] = e;
Q.push(v);
}
}
}
return gPre[t] != -1;
} int MinCostFlow(int s, int t){
int cost = 0;
int max_flow = 0;
int u, v, e;
while (Spfa(s, t)){
int f = INF;
for (u = t; u != s; u = gPre[u]){
f = min(f, gEdges[gPath[u]].vol);
} for (u = t; u != s; u = gPre[u]){
e = gPath[u];
gEdges[e].vol -= f;
gEdges[e^1].vol += f; //反向边
}
max_flow += f;
cost += f*gDist[t];
}
return cost;
} char gMap[105][105];
vector<pair<int, int> > gHousVec;
vector<pair<int, int> > gManVec;
//建图
void BuildGraph(){
int n = gHousVec.size();
// 源点0,连接到每个小人结点,流量为1,单位费用为0
for (int u = 1; u <= n; u++){
InsertEdge(0, u, 1, 0);
}
for (int i = 0; i < n; i++){
for (int j = 0; j < n; j++){
//求出小人i到房间j的最短距离
int min_dist = abs(gManVec[i].first - gHousVec[j].first) + abs(gManVec[i].second - gHousVec[j].second);
//建边,连接小人i和房间j
InsertEdge(i + 1, j + n + 1, 1, min_dist);
}
}
//汇点 2*n+1,连接各个房间借点到汇点,流量为1,单位费用为0
for (int u = 1; u <= n; u++){
InsertEdge(n + u, 2 * n + 1, 1, 0);
}
}
int main(){
int n, m;
while (scanf("%d %d", &n, &m) && n && m){
char tmp;
gHousVec.clear(); //初始化
gManVec.clear();
memset(gHead, -1, sizeof(gHead)); //图的初始化
gEdgeCount = 0; //图的初始化 for (int i = 1; i <= n; i++){
getchar();
for (int j = 1; j <= m; j++){
scanf("%c", &tmp);
if (tmp == 'H'){
gHousVec.push_back(pair<int, int>(i, j));
}
else if (tmp == 'm'){
gManVec.push_back(pair<int, int>(i, j));
}
}
}
BuildGraph(); //建图
int cost = MinCostFlow(0, 2 * gHousVec.size() + 1); //求解最小费用最大流
printf("%d\n", cost);
}
return 0;
}