Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

时间:2024-12-12 19:06:32

本文是对Redis 单节点,针对不同的数据类型,做插入行测试. 数据总条数为:10058624

环境说明:

            Redis 未做任何优化, 单节点    (服务器上, 内存64G).

            数据量 : 10058624条  (大约一千零6万条数据,本地机器运行读取插入操作.)

            数据大小 :  1093.56MB  (1.1G)

 插入数据类型为 String 类型

Jedis插入

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
jedis.set("index" + SEPARATOR +index, Array2String(rowValues));
}
}
jedis.close();
}

Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

假设插入速度为 2800条/s , 那么插入10058624 条数据需要用时: 3593秒 .  (  59.88 min , 约 1小时.  )!!!!!

Pipelining插入

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
Pipeline pipelined = jedis.pipelined(); InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
pipelined.set("index"+ SEPARATOR +index,Array2String(rowValues));
}
}
pipelined.sync();
jedis.close();
}

Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

处理数据完成  ==> 插入数据总条数 size : 10058624   total use : 62 s  , 处理速度: 162235 条/s

和传统方式相比,性能差将近58 倍!!!!!!!!

读取全部 String 类型数据

Jedis读取

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
long start = System.currentTimeMillis(); int num = 10058624;
for (int index = 1; index < num; index++){
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
String key = KEYPREFIX + SEPARATOR + index;
String value = jedis.get(key);
}
jedis.close();
}

Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

假设插入速度为 5000条/s , 那么插入10058624 条数据需要用时: 2012 秒  .  (  33min 30 s  .  )

Pipelining读取

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
Pipeline pipelined = jedis.pipelined(); long start = System.currentTimeMillis();
HashMap<String, Response<String>> intrmMap = new HashMap<String, Response<String>>(); int num = 10058624;
for (int index = 1; index < num; index++){
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
String key = KEYPREFIX + SEPARATOR + index;
intrmMap.put(key, pipelined.get(key));
}
pipelined.sync();
jedis.close();
}

Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

由于是异步操作, 所以上面的结果并不准.最终获取数据时间

batchGetUsePipeline : 处理数据完成  ==> 读取数据总条数 size : 10058623   total use : 48 s  , 处理速度: 209554 条/s 

和传统方式相比,性能差将近 41.92  倍!!!!!!!!

插入数据类型为 List 类型

Jedis插入

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
jedis.lpush("index", JacksonUtils.toJSon(rowValues));
}
}
jedis.close();
}

Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

假设插入速度为 2600条/s , 那么插入10058624 条数据需要用时: 3869 秒 .  (  64.5 min , 约 1小时零5分钟.  )

Pipeline 插入

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
Pipeline pipelined = jedis.pipelined(); InputStream fis = null;
fis = new BufferedInputStream(new FileInputStream(PATH));
//根据数据流初始化一个DBFReader实例,用来读取DBF文件信息
DBFReader reader = new DBFReader(fis); Object[] rowValues;
int index = 0; while ((rowValues = reader.nextRecord()) != null){
if (null != rowValues && rowValues.length > 0) {
index ++;
if (index %10000 == 0) {
long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 插入数据总条数 : "+index+" 总耗时 : "+ (end-start)/1000 + " s , 处理速度 : " +(index/((end-start)/1000))+" 条 / s");
}
pipelined.lpush("index", JacksonUtils.toJSon(rowValues));
}
}
pipelined.sync();
jedis.close();
}

Redis:Java链接redis单节点千万级别数据 写入,读取 性能测试

处理数据完成  ==> 插入数据总条数 size : 10058624   total use : 62 s  , 处理速度: 162235 条/s 

和传统方式对比  性能相差 62.5倍

读取全部 List 类型数据

Jedis读取

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
long start = System.currentTimeMillis(); List<String> list = jedis.lrange("index", 0, 10058624);
jedis.close(); long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 读取数据总条数 : "+list.size()+" 耗时 : "+ start + " s , 处理速度 : " +(list.size()/((end-start)/1000))+" 条 / s");
}

读取数据总条数 size : 10058624   total use : 15 s  , 处理速度: 670574 条/s

Pipline读取

public void save(){
//连接本地Redis服务
Jedis jedis = new Jedis("bj-rack001-hadoop006");
long start = System.currentTimeMillis();
Pipeline pipelined = jedis.pipelined(); Response<List<String>> list = pipelined.lrange("index", 0, 10058624); pipelined.sync();
jedis.close(); long end = System.currentTimeMillis();
System.out.println("处理数据中 ==> 读取数据总条数 : "+list.size()+" 耗时 : "+ start + " s , 处理速度 : " +(list.size()/((end-start)/1000))+" 条 / s");
}

处理数据完成  ==> 读取数据总条数 size : 10058624   total use : 12 s  , 处理速度: 838218 条/s

pipline的数据读取方式确实会快很多, 但是内存存在消耗

文章转载至:https://blog.****.net/zhanglong_4444/article/details/87921162