内核默认的运行地址为PHY_OFFSET+0x8000,即物理地址开始后的0x8000字节处,前面是留给参数用的。参数以atag方式存储,默认放在0x100偏移位置。
http://blog.chinaunix.net/uid-20451980-id-1945241.html
Linux kernel分析(一)
注:本文为Stephen Du原创,转载请注明
一直想把自己自毕业以来学习Linux kernel的点点滴滴进行一次整理,却总是因工作繁忙而一再推迟。最近把kernel知识进行了一次全面的回顾,因此下定决心将这件事情做好。
本文只针对ARM平台的源码分析并且并不包括bootloader的部分,也就是说只分析kernel内的“标准”代码。闲话少说,正式开始。
bootloader完成基本的硬件初始化后,就开始执行arch/arm/kernel/head.S下的汇编代码,紧接着执行arch/arm/kernel/head-common.S,最后跳转到init/main.c中的start_kernel()函数。现在从arch/arm/kernel/head.S入手,看看这里做了什么。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启!(对于逻辑地址,线性地址,虚地址,物理地址,实模式,保护模式等基本概念此处不会解释)
宏 位置 默认值 说明
KERNEL_RAM_VADDR arch/arm/kernel/head.S
0xc0008000 kernel在RAM中的的虚拟地址
KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000 kernel在RAM中的的物理地址
PAGE_OFFSET include/asm-arm/memeory.h
0xc0000000 内核空间的起始虚拟地址
TEXT_OFFSET arch/arm/Makefile
0x00008000 内核相对于存储空间的偏移
TEXTADDR arch/arm/kernel/head.S
0xc0008000 kernel的起始虚拟地址
PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平台相关 RAM的起始物理地址
KERNEL_START KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)
PHYS_OFFSET是RAM的物理地址,内核规定必须是2M对齐的
25 #if (PHYS_OFFSET & 0x001fffff)
26 #error "PHYS_OFFSET must be at an even 2MiB
boundary!"
27 #endif
28 KERNEL_RAM_VADDR定义了经过映射后的内核镜像的virtual地址(link地址),PAGE_OFFSET=3G边界
KERNEL_RAM_PADDR定义了内核镜像的物理地址。
问题:内核镜像为什么一定要映射到高3G的地址上呢?不映射不行吗?
答案:多进程要求多个虚拟地址空间并存,而物理上内存空间只有一个,因此必须将各个进程的虚空间进行动态映射到同一个物理空间上;另一个方面,不同机器环境下,物理内存大小不尽相同(可能太大也可能太小了),必须通过映射屏蔽这些差异以便让进程看不到差异的使用4G(32bit环境)的地址空间!内核属于一个特殊的“进程”(并不是一个进程那么简单),也必须工作于虚地址空间之下(CPU处于实模式下只能寻址有限的物理地址空间),因此需要将物理地址映射到3G(这个3G并不是一定的,可以通过内核编译选项更改,但是通常都是3G)边界的虚地址之上运行,这样基地址+偏移量的寻址思想便可以无缝的使用了!此处答案为本人个人根据现有知识的理解,可能存在错误!
29 #define KERNEL_RAM_VADDR
(PAGE_OFFSET + TEXT_OFFSET)
30 #define KERNEL_RAM_PADDR
(PHYS_OFFSET + TEXT_OFFSET)
经过映射后的内核镜像的地址必须是1M对齐的!
40 #if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
//The virtual addr of the kernel need to be 1M align
41 #error KERNEL_RAM_VADDR must start at 0xXXXX8000
42 #endif
定义了临时page table的存放地址(虚地址)0xC000000 - 0x4000
43 swapper_pg_dir
44 .globl
swapper_pg_dir
45 .equ
swapper_pg_dir, KERNEL_RAM_VADDR - 0x4000 @The temp page table base addr
is here(0xC000000 - 0x4000)
46 该macro用于获取临时page table的物理地址
47 .macro pgtbl,
rd
48 ldr
\rd, =(KERNEL_RAM_PADDR - 0x4000)
49 .endm
50 XIP是片内执行的意思;针对某些存在NOR flash扩展的系统内核镜像是直接存放在XOR flash上运行的,因此镜像的地址应该是NOR flash的地址而不是RAM的地址。
51 #ifdef CONFIG_XIP_KERNEL
52 #define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
53 #define KERNEL_END
_edata_loc
54 #else
55 #define KERNEL_START
KERNEL_RAM_VADDR
56 #define KERNEL_END _end
57 #endif
第一阶段:
这一段是bootloader进入kernel的一个入口。在进入该函数之前,整个硬件系统至少需要初始化以下的状态:
1)MMU必须关闭(page
table还没有建立,不能进行虚地址转实地址,CPU工作与相对寻址状态,CP指向的是物理地址)
2)D-cache是CPU的数据cache必须处于关闭状态;I-cache是命令cache可以开也可以关闭!
3)R0由bootloader必须清零;R1由bootloader设置为machine的number(这个是什么,可以查看内核的ARM boot文档arch/arm/tools/mach-types);R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中并将这个地址传递给kernel以便在进入kernel后使用
77 .section
".text.head", "ax"
78 .type stext,
%function
这里定义了由bootloader进入内核的入口stext!关键的部分来了,哈哈哈
79 ENTRY(stext)
由于要做一些底层的初始化,因此先将CPU切入SVC模式并关闭中断(由于中断向量表以及异常向量表并未建立,CPU无法响应中断请求!)
80 msr
cpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ ensure svc mode
81
@ and irqs disabled
通过协处理器获取处理器ID
82 mrc
p15, 0, r9, c0, c0 @ get
processor id
此处需要确定CPU的类型才能进行相应的初始化操作
83 bl
__lookup_processor_type @ r5=procinfo
r9=cpuid
84 movs
r10, r5
@ invalid processor (r5=0)?
85 beq
__error_p
@ yes, error 'p'
根据内核中预置的信息,判断当前的board是哪个来确定存储器扩展以及扩展的外设有哪些
86 bl
__lookup_machine_type @ r5=machinfo
87 movs
r8, r5
@ invalid machine (r5=0)?
88 beq
__error_a
@ yes, error 'a'
此处会去校验atag的内容
89 bl
__vet_atags
这里非常重要!由于CPU要开启MMU进入虚地址执行模式,因此必须先建立一个临时的page table(临时的意思是将来会这个table将会被抛弃,重新建立)
90 bl
__create_page_tables
这一句十分重要也值得去细细推敲,看似没有什么用途,但是在后边开启MMU后进入虚地址空间(link地址)的部分至关重要!因为,该伪指令会将__switch_data对应的虚地址加载给r13寄存器,后面会通过将r13加载进pc(指令计数器)达到进入虚地址模式的目的!也就是说此前的所有代码工作于PIC(position independent code),并没有使用link地址,理解这一点很重要!
99 ldr r13, __switch_data
@ address to jump to
__mmap_switched(This is not PIC addr that means:it is a absolute addr in the
kernel image, another words virtual addr) after the MMU switched on and return
here which start execute code in the virtual space!!!!!!!!!!!!!!!!!!!!!!!!!!
100
@ mmu has been enabled
page table已经建立准备开启MMU
101 adr lr,
__enable_mmu @ return
(PIC) address
执行清除CPU cache以及TLB(table
lookup buffer是MMU的高速缓冲区,提供高速虚实地址转换,原理是将以前的转换结果放在这个buffer当中,如果请求的地址在这里则不做全局搜索)的工作
102 add pc,
r10, #PROCINFO_INITFUNC @Call the __cpu_flush to clear
I-cache-D-cache TLB related registered as PROCINFO_INITFUNC
103
@After __enable_mmu start to exwcute
__switch_data by mov pc, r13 in __enable_mmu
104
多CPU的系统暂时不分析!呵呵
105 #if defined(CONFIG_SMP)
106 .type
secondary_startup, #function
107 ENTRY(secondary_startup)
108 /*
109 * Common entry
point for secondary CPUs.
110 *
111 * Ensure that we're
in SVC mode, and IRQs are disabled. Lookup
112 * the processor
type - there is no need to check the machine type
113 * as it has already
been validated by the primary processor.
114 */
115 msr cpsr_c,
#PSR_F_BIT | PSR_I_BIT | SVC_MODE
116 mrc p15, 0,
r9, c0, c0 @ get processor id
117 bl
__lookup_processor_type
118 movs r10, r5
@ invalid processor?
119 moveq r0, #'p'
@ yes, error 'p'
120 beq __error
121
122 /*
123 * Use the page
tables supplied from __cpu_up.
124 */
125 adr r4,
__secondary_data
126 ldmia r4, {r5, r7,
r13} @ address to jump to
after
127 sub r4, r4,
r5 @
mmu has been enabled
128 ldr r4,
[r7, r4] @
get secondary_data.pgdir
129 adr lr,
__enable_mmu @ return
address
130 add pc,
r10, #PROCINFO_INITFUNC @ initialise processor
131
@ (return control reg)
132
133 /*
134 * r6 =
&secondary_data
135 */
136 ENTRY(__secondary_switched)
137 ldr sp,
[r7, #4] @
get secondary_data.stack
138 mov fp, #0
139 b
secondary_start_kernel
140
141 .type
__secondary_data, %object
142 __secondary_data:
143 .long .
144 .long
secondary_data
145 .long
__secondary_switched
146 #endif /* defined(CONFIG_SMP) */
147
开启MMU的函数
155 .type
__enable_mmu, %function
156 __enable_mmu:
157 #ifdef CONFIG_ALIGNMENT_TRAP
158 orr r0, r0,
#CR_A
159 #else
160 bic r0, r0,
#CR_A
161 #endif
162 #ifdef CONFIG_CPU_DCACHE_DISABLE
163 bic r0, r0,
#CR_C
164 #endif
165 #ifdef CONFIG_CPU_BPREDICT_DISABLE
166 bic r0, r0,
#CR_Z
167 #endif
168 #ifdef CONFIG_CPU_ICACHE_DISABLE
169 bic r0, r0,
#CR_I
170 #endif
此处MMU相关的设置,本人没有细究,有情趣的可以研究研究
171 mov r5,
#(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
172
domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
173
domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
174
domain_val(DOMAIN_IO, DOMAIN_CLIENT))
175 mcr p15, 0,
r5, c3, c0, 0 @ load domain access register
176 mcr p15, 0,
r4, c2, c0, 0 @ load page table pointer
177 b
__turn_mmu_on
这里真正的开启了MMU并从PIC进入virual地址空间运行!!
190 .align 5
191 .type
__turn_mmu_on, %function
192 __turn_mmu_on:
执行延时操作(原因在于协处理器相关操作不能立即生效,需要几个ARM的指令周期后才能工作!)
193 mov r0, r0
@delay for the reason of the ARM execute flow!
194 mcr p15, 0,
r0, c1, c0, 0 @ write control reg
195 mrc p15, 0,
r3, c0, c0, 0 @ read id reg
196 mov r3, r3
@delay!!!!!for the reason of ARM execute flow!
197 mov r3, r3
@delay!!!!!
该行代码之前pc方的是物理地址,此后pc存放的将是虚地址,也就是phys+0xc000000
198 mov pc, r13
@jump to the __switch_data; r3 contains the virtual addr of
__switch_data, because the MMU is on, so this virtual addr can be
translated into the physical addr automatically!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
以后的代码在虚地址空间运行!!!!!!!!!!!!!!!!!!!
该函数在PHYS_OFFSET+0x08000-0x4000处创建临时page table
215 .type
__create_page_tables, %function
216 __create_page_tables:
217 pgtbl r4
@ Get page table base address r4=0x4000 16K addr
清零内存
222 mov r0, r4
@Back up base page table addr
223 mov r3, #0
224 add r6, r0,
#0x4000 @ r6 contains the end of page table addr
225 /***Clear the 16K page table memory to 0*/
226 1: str r3, [r0], #4
227 str r3,
[r0], #4
228 str r3,
[r0], #4
229 str r3,
[r0], #4
230 teq r0, r6
231 bne 1b
232 /**End*/
将内核镜像中的MMU flag数值取出,准备设置page table
233 ldr r7,
[r10, #PROCINFO_MM_MMUFLAGS] @ get the mm_mmuflags
此处,为当前物理地址起的1M空间建立映射(1M源于ARM的MMU支持2级page,第一级支持1M的page或者指向2级的entry;由于内核镜像的特殊性,它的segments被放在一级page table的1M page内而不是存放在后面将要讲述的4kpage内)
该语句比较重要,pc此处指向物理地址,右移20次则得到当前物理地址的1M计数(再左移20位就是segment的地址!,相当于清零低20bit)
241 mov r6, pc,
lsr #20 @ start of
kernel section r6=pc>>20 contains section addr and the virt addr == phys
addr
根据上句得出的段计数左移20位算出段地址,并将将低20bit设置成MMU的flag,得到一个map entry!
242 orr r3, r7,
r6, lsl #20 @ flags + kernel base
将map entry数值写回page table相应的位置,以便MMU查表转换的时候使用!这里有一点值得注意:这里,映射前后的地址空间实际上上一样的,因为pc的虚地址跟物理地址重合!r6(可以理解r6的数值为page table的index)之所以左移2bit是由于每个page table的entry占4个字节,然后page entry addr=r4(基地址)+index*4
243 str r3,
[r4, r6, lsl #2] @ identity
mapping;Reason see r6=pc>>20
244
@ r6 contains the index offset in the
page table so multiple 4 get the address of the L1 entry
245 /**Here we need an id to
decide which page entry to write the r3, so we apply multi 4 to get the id*/
这里为内核镜像建立映射(映射的本质是设置page
table entry,让MMU知道如何将虚地址转换成物理地址);非XIP的时候KERNEL_RAM_VADDR=KERNEL_START
251 add
r0, r4, #(KERNEL_START & 0xff000000) >> 18
//Should firstly right shift 20bits and for the reason of page entry is 4 bytes
size so left s hift 2 then is 18;What is 0xff000000?while not
0xfff00000? Answer is in the next code 0x0f00000+0xff000000=0xfff0000!
252 str r3,
[r0, #(KERNEL_START & 0x00f00000) >> 18]! //Attention!r3's content
remains as the kernel section map, so
253
//The two virtual addr corresponds to the same phys addr!
254 ldr r6,
=(KERNEL_END - 1)
255 add r0, r0,
#4 //Point to the next L1 entry!
256 add r6, r4,
r6, lsr #18 //Caculate the end of L1 entry
257 1: cmp r0, r6
//Reaching the end of entry?
258 add r3, r3,
#1 << 20 //add the segment addr for 1
259 strls r3, [r0], #4
260 bls 1b
261
262 #ifdef CONFIG_XIP_KERNEL
263 /*
264 * Map some ram to
cover our .data and .bss areas.
265 */
266 orr r3, r7,
#(KERNEL_RAM_PADDR & 0xff000000)
267 .if
(KERNEL_RAM_PADDR & 0x00f00000)
268 orr r3, r3,
#(KERNEL_RAM_PADDR & 0x00f00000)
269 .endif
270 add r0, r4,
#(KERNEL_RAM_VADDR & 0xff000000) >> 18
271 str r3,
[r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> 18]!
272 ldr r6,
=(_end - 1)
273 add r0, r0,
#4
274 add r6, r4,
r6, lsr #18
275 1: cmp r0, r6
276 add r3, r3,
#1 << 20
277 strls r3, [r0], #4
278 bls 1b
279 #endif
由于最低1M存放了bootloader传递给kernel的一些参数,因此需要为它建立map这样开启MMU后就可以访问这些参数了。
284 add r0, r4,
#PAGE_OFFSET >> 18 @The base virtual addr!
285 orr r6, r7,
#(PHYS_OFFSET & 0xff000000)
286 .if
(PHYS_OFFSET & 0x00f00000)
287 orr r6, r6,
#(PHYS_OFFSET & 0x00f00000)
288 .endif
289 str r6,
[r0]
建好页表返回
332 mov pc, lr
333 .ltorg
334
335 #include "head-common.S"
-------------------------------------------------------
如下为 head.S内容,我做了简单注释
/*
head.s是linux解压后的运行的第一个程序。
为保持通用性,与机器相关的代码都应有bootloader完成。
此程序主要完成页表初始化,开启MMU。
stext->__enable_mmu->__turn_mmu_on->ldr pc, __mmap_switched
->__mmap_switched(head-common.S)
->b start_kernel(init/main.c)
以下开始的代码都运行于物理地址空间中并未进入虚地址空间,因为MMU还没有开启! 宏 位置 默认值 说明
KERNEL_RAM_VADDR arch/arm/kernel/head.S 0xc0008000 kernel在RAM中的的虚拟地址
KERNEL_RAM_PADDR arch/arm/kernel/head.S PHYS_OFFSET+0x00008000 kernel在RAM中的的物理地址
PAGE_OFFSET include/asm-arm/memeory.h 0xc0000000 内核空间的起始虚拟地址
TEXT_OFFSET arch/arm/Makefile 0x00008000 内核相对于存储空间的偏移
TEXTADDR arch/arm/kernel/head.S 0xc0008000 kernel的起始虚拟地址
PHYS_OFFSET include/asm-arm/arch-xxx/memory.h 平台相关 RAM的起始物理地址
KERNEL_START KERNEL_RAM_VADDR Kernel被copy进RAM的地址(非XIP的情况如此,
但是XIP时候KERNEL_START!=KERNEL_RAM_VADDR)
*/ /*
* linux/arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (c) 2003 ARM Limited
* All Rights Reserved
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Kernel startup code for all 32-bit CPUs
*/
#include <linux/linkage.h>
#include <linux/init.h> #include <asm/assembler.h>
#include <asm/domain.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/memory.h>
#include <asm/thread_info.h>
#include <asm/system.h>
#include <asm/pgtable.h> #ifdef CONFIG_DEBUG_LL
#include <mach/debug-macro.S>
#endif /*
swapper_pg_dir是初始(第一个)页表的虚拟地址,放在KERNEL_RAM_VADDR下的16K空间。
KERNEL_RAM_VADDR必须0x8000对齐,kernel在ram中的虚拟地址,一般为0xc0008000。
*/
/*
* swapper_pg_dir is the virtual address of the initial page table.
* We place the page tables 16K below KERNEL_RAM_VADDR. Therefore, we must
* make sure that KERNEL_RAM_VADDR is correctly set. Currently, we expect
* the least significant 16 bits to be 0x8000, but we could probably
* relax this restriction to KERNEL_RAM_VADDR >= PAGE_OFFSET + 0x4000.
*/
#define KERNEL_RAM_VADDR (PAGE_OFFSET + TEXT_OFFSET)
#if (KERNEL_RAM_VADDR & 0xffff) != 0x8000
#error KERNEL_RAM_VADDR must start at 0xXXXX8000
#endif #define PG_DIR_SIZE 0x4000
#define PMD_ORDER 2 .globl swapper_pg_dir
.equ swapper_pg_dir, KERNEL_RAM_VADDR - PG_DIR_SIZE .macro pgtbl, rd, phys
add \rd, \phys, #TEXT_OFFSET - PG_DIR_SIZE
.endm #ifdef CONFIG_XIP_KERNEL
#define KERNEL_START XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
#define KERNEL_END _edata_loc
#else
#define KERNEL_START KERNEL_RAM_VADDR
#define KERNEL_END _end
#endif /*
内核运行条件:关闭MMU,关闭D-cache,I-cache无关,
r0 = 0
r1 = machine nr
r2 = atags or dtb指针
R2放置atag指针,bootloader在初始化过程中会将kernel必需的参数搜集并放入该atag list中
并将这个地址传递给kernel以便在进入kernel后使用
*/
/*
* Kernel startup entry point.
* ---------------------------
*
* This is normally called from the decompressor code. The requirements
* are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
* r1 = machine nr, r2 = atags or dtb pointer.
*
* This code is mostly position independent, so if you link the kernel at
* 0xc0008000, you call this at __pa(0xc0008000).
*
* See linux/arch/arm/tools/mach-types for the complete list of machine
* numbers for r1.
*
* We're trying to keep crap to a minimum; DO NOT add any machine specific
* crap here - that's what the boot loader (or in extreme, well justified
* circumstances, zImage) is for.
*/
.arm __HEAD
ENTRY(stext) THUMB( adr r9, BSYM(1f) ) @ Kernel is always entered in ARM.
THUMB( bx r9 ) @ If this is a Thumb- kernel,
THUMB( .thumb ) @ switch to Thumb now.
THUMB(: ) setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9 @ ensure svc mode
@ and irqs disabled
mrc p15, , r9, c0, c0 @ get processor id
bl __lookup_processor_type @ r5=procinfo r9=cpuid
movs r10, r5 @ invalid processor (r5=)?
THUMB( it eq ) @ force fixup-able long branch encoding
beq __error_p @ yes, error 'p' #ifndef CONFIG_XIP_KERNEL
adr r3, 2f
ldmia r3, {r4, r8}
sub r4, r3, r4 @ (PHYS_OFFSET - PAGE_OFFSET)
add r8, r8, r4 @ PHYS_OFFSET
#else
ldr r8, =PHYS_OFFSET @ always constant in this case
#endif /*
* r1 = machine no, r2 = atags or dtb,
* r8 = phys_offset, r9 = cpuid, r10 = procinfo
*/
bl __vet_atags
#ifdef CONFIG_SMP_ON_UP
bl __fixup_smp
#endif
#ifdef CONFIG_ARM_PATCH_PHYS_VIRT
bl __fixup_pv_table
#endif
bl __create_page_tables /*
* The following calls CPU specific code in a position independent
* manner. See arch/arm/mm/proc-*.S for details. r10 = base of
* xxx_proc_info structure selected by __lookup_processor_type
* above. On return, the CPU will be ready for the MMU to be
* turned on, and r0 will hold the CPU control register value.
*/
ldr r13, =__mmap_switched @ address to jump to after
@ mmu has been enabled
adr lr, BSYM(1f) @ return (PIC) address
mov r8, r4 @ set TTBR1 to swapper_pg_dir
ARM( add pc, r10, #PROCINFO_INITFUNC )
THUMB( add r12, r10, #PROCINFO_INITFUNC )
THUMB( mov pc, r12 )
: b __enable_mmu
ENDPROC(stext)
.ltorg
#ifndef CONFIG_XIP_KERNEL
: .long .
.long PAGE_OFFSET
#endif /************************************************************************/ /*
建立初始页表。仅仅建立能使内核运行的最小量页,映射在内核区。
*/
/*
* Setup the initial page tables. We only setup the barest
* amount which are required to get the kernel running, which
* generally means mapping in the kernel code.
*
* r8 = phys_offset, r9 = cpuid, r10 = procinfo
*
* Returns:
* r0, r3, r5-r7 corrupted
* r4 = physical page table address
*/
__create_page_tables:
pgtbl r4, r8 @ page table address /*
* Clear the swapper page table
*/
mov r0, r4
mov r3, #
add r6, r0, #PG_DIR_SIZE
: str r3, [r0], #
str r3, [r0], #
str r3, [r0], #
str r3, [r0], #
teq r0, r6
bne 1b ldr r7, [r10, #PROCINFO_MM_MMUFLAGS] @ mm_mmuflags /*
* Create identity mapping to cater for __enable_mmu.
* This identity mapping will be removed by paging_init().
*/
adr r0, __enable_mmu_loc
ldmia r0, {r3, r5, r6}
sub r0, r0, r3 @ virt->phys offset
add r5, r5, r0 @ phys __enable_mmu
add r6, r6, r0 @ phys __enable_mmu_end
mov r5, r5, lsr #SECTION_SHIFT
mov r6, r6, lsr #SECTION_SHIFT : orr r3, r7, r5, lsl #SECTION_SHIFT @ flags + kernel base
str r3, [r4, r5, lsl #PMD_ORDER] @ identity mapping
cmp r5, r6
addlo r5, r5, # @ next section
blo 1b /*
* Now setup the pagetables for our kernel direct
* mapped region.
*/
mov r3, pc
mov r3, r3, lsr #SECTION_SHIFT
orr r3, r7, r3, lsl #SECTION_SHIFT
add r0, r4, #(KERNEL_START & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
str r3, [r0, #((KERNEL_START & 0x00f00000) >> SECTION_SHIFT) << PMD_ORDER]!
ldr r6, =(KERNEL_END - )
add r0, r0, # << PMD_ORDER
add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)
: cmp r0, r6
add r3, r3, # << SECTION_SHIFT
strls r3, [r0], # << PMD_ORDER
bls 1b #ifdef CONFIG_XIP_KERNEL
/*
* Map some ram to cover our .data and .bss areas.
*/
add r3, r8, #TEXT_OFFSET
orr r3, r3, r7
add r0, r4, #(KERNEL_RAM_VADDR & 0xff000000) >> (SECTION_SHIFT - PMD_ORDER)
str r3, [r0, #(KERNEL_RAM_VADDR & 0x00f00000) >> (SECTION_SHIFT - PMD_ORDER)]!
ldr r6, =(_end - )
add r0, r0, #
add r6, r4, r6, lsr #(SECTION_SHIFT - PMD_ORDER)
: cmp r0, r6
add r3, r3, # <<
strls r3, [r0], #
bls 1b
#endif /*
boot 参数地址在r2,或者ram的开始1MB空间(加入参数地址未指定)
*/
/*
* Then map boot params address in r2 or
* the first 1MB of ram if boot params address is not specified.
*/
mov r0, r2, lsr #SECTION_SHIFT
movs r0, r0, lsl #SECTION_SHIFT
moveq r0, r8
sub r3, r0, r8
add r3, r3, #PAGE_OFFSET
add r3, r4, r3, lsr #(SECTION_SHIFT - PMD_ORDER)
orr r6, r7, r0
str r6, [r3] #ifdef CONFIG_DEBUG_LL
#ifndef CONFIG_DEBUG_ICEDCC
/*
* Map in IO space for serial debugging.
* This allows debug messages to be output
* via a serial console before paging_init.
*/
addruart r7, r3, r0 mov r3, r3, lsr #SECTION_SHIFT
mov r3, r3, lsl #PMD_ORDER add r0, r4, r3
rsb r3, r3, #0x4000 @ PTRS_PER_PGD*sizeof(long)
cmp r3, #0x0800 @ limit to 512MB
movhi r3, #0x0800
add r6, r0, r3
mov r3, r7, lsr #SECTION_SHIFT
ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
orr r3, r7, r3, lsl #SECTION_SHIFT
: str r3, [r0], #
add r3, r3, # << SECTION_SHIFT
cmp r0, r6
blo 1b #else /* CONFIG_DEBUG_ICEDCC */
/* we don't need any serial debugging mappings for ICEDCC */
ldr r7, [r10, #PROCINFO_IO_MMUFLAGS] @ io_mmuflags
#endif /* !CONFIG_DEBUG_ICEDCC */ #if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
/*
* If we're using the NetWinder or CATS, we also need to map
* in the 16550-type serial port for the debug messages
*/
add r0, r4, #0xff000000 >> (SECTION_SHIFT - PMD_ORDER)
orr r3, r7, #0x7c000000
str r3, [r0]
#endif
#ifdef CONFIG_ARCH_RPC
/*
* Map in screen at 0x02000000 & SCREEN2_BASE
* Similar reasons here - for debug. This is
* only for Acorn RiscPC architectures.
*/
add r0, r4, #0x02000000 >> (SECTION_SHIFT - PMD_ORDER)
orr r3, r7, #0x02000000
str r3, [r0]
add r0, r4, #0xd8000000 >> (SECTION_SHIFT - PMD_ORDER)
str r3, [r0]
#endif
#endif
mov pc, lr
ENDPROC(__create_page_tables)
.ltorg
.align
__enable_mmu_loc:
.long .
.long __enable_mmu
.long __enable_mmu_end #if defined(CONFIG_SMP)
__CPUINIT
ENTRY(secondary_startup)
/*
* Common entry point for secondary CPUs.
*
* Ensure that we're in SVC mode, and IRQs are disabled. Lookup
* the processor type - there is no need to check the machine type
* as it has already been validated by the primary processor.
*/
setmode PSR_F_BIT | PSR_I_BIT | SVC_MODE, r9
mrc p15, , r9, c0, c0 @ get processor id
bl __lookup_processor_type
movs r10, r5 @ invalid processor?
moveq r0, #'p' @ yes, error 'p'
THUMB( it eq ) @ force fixup-able long branch encoding
beq __error_p /*
* Use the page tables supplied from __cpu_up.
*/
adr r4, __secondary_data
ldmia r4, {r5, r7, r12} @ address to jump to after
sub lr, r4, r5 @ mmu has been enabled
ldr r4, [r7, lr] @ get secondary_data.pgdir
add r7, r7, #
ldr r8, [r7, lr] @ get secondary_data.swapper_pg_dir
adr lr, BSYM(__enable_mmu) @ return address
mov r13, r12 @ __secondary_switched address
ARM( add pc, r10, #PROCINFO_INITFUNC ) @ initialise processor
@ (return control reg)
THUMB( add r12, r10, #PROCINFO_INITFUNC )
THUMB( mov pc, r12 )
ENDPROC(secondary_startup) /*
* r6 = &secondary_data
*/
ENTRY(__secondary_switched)
ldr sp, [r7, #] @ get secondary_data.stack
mov fp, #
b secondary_start_kernel
ENDPROC(__secondary_switched) .align .type __secondary_data, %object
__secondary_data:
.long .
.long secondary_data
.long __secondary_switched
#endif /* defined(CONFIG_SMP) */ /*
* Setup common bits before finally enabling the MMU. Essentially
* this is just loading the page table pointer and domain access
* registers.
*
* r0 = cp#15 control register
* r1 = machine ID
* r2 = atags or dtb pointer
* r4 = page table pointer
* r9 = processor ID
* r13 = *virtual* address to jump to upon completion
*/
__enable_mmu:
#if defined(CONFIG_ALIGNMENT_TRAP) && __LINUX_ARM_ARCH__ < 6
orr r0, r0, #CR_A
#else
bic r0, r0, #CR_A
#endif
#ifdef CONFIG_CPU_DCACHE_DISABLE
bic r0, r0, #CR_C
#endif
#ifdef CONFIG_CPU_BPREDICT_DISABLE
bic r0, r0, #CR_Z
#endif
#ifdef CONFIG_CPU_ICACHE_DISABLE
bic r0, r0, #CR_I
#endif
mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
domain_val(DOMAIN_IO, DOMAIN_CLIENT))
mcr p15, , r5, c3, c0, @ load domain access register
mcr p15, , r4, c2, c0, @ load page table pointer
b __turn_mmu_on
ENDPROC(__enable_mmu) /*
* Enable the MMU. This completely changes the structure of the visible
* memory space. You will not be able to trace execution through this.
* If you have an enquiry about this, *please* check the linux-arm-kernel
* mailing list archives BEFORE sending another post to the list.
*
* r0 = cp#15 control register
* r1 = machine ID
* r2 = atags or dtb pointer
* r9 = processor ID
* r13 = *virtual* address to jump to upon completion
*
* other registers depend on the function called upon completion
*/
.align
__turn_mmu_on:
mov r0, r0
mcr p15, , r0, c1, c0, @ write control reg
mrc p15, , r3, c0, c0, @ read id reg
mov r3, r3
mov r3, r13
mov pc, r3
__enable_mmu_end:
ENDPROC(__turn_mmu_on) #ifdef CONFIG_SMP_ON_UP
__INIT
__fixup_smp:
and r3, r9, #0x000f0000 @ architecture version
teq r3, #0x000f0000 @ CPU ID supported?
bne __fixup_smp_on_up @ no, assume UP bic r3, r9, #0x00ff0000
bic r3, r3, #0x0000000f @ mask 0xff00fff0
mov r4, #0x41000000
orr r4, r4, #0x0000b000
orr r4, r4, #0x00000020 @ val 0x4100b020
teq r3, r4 @ ARM 11MPCore?
moveq pc, lr @ yes, assume SMP mrc p15, , r0, c0, c0, @ read MPIDR
and r0, r0, #0xc0000000 @ multiprocessing extensions and
teq r0, #0x80000000 @ not part of a uniprocessor system?
moveq pc, lr @ yes, assume SMP __fixup_smp_on_up:
adr r0, 1f
ldmia r0, {r3 - r5}
sub r3, r0, r3
add r4, r4, r3
add r5, r5, r3
b __do_fixup_smp_on_up
ENDPROC(__fixup_smp) .align
: .word .
.word __smpalt_begin
.word __smpalt_end .pushsection .data
.globl smp_on_up
smp_on_up:
ALT_SMP(.long )
ALT_UP(.long )
.popsection
#endif .text
__do_fixup_smp_on_up:
cmp r4, r5
movhs pc, lr
ldmia r4!, {r0, r6}
ARM( str r6, [r0, r3] )
THUMB( add r0, r0, r3 )
#ifdef __ARMEB__
THUMB( mov r6, r6, ror # ) @ Convert word order for big-endian.
#endif
THUMB( strh r6, [r0], # ) @ For Thumb-, store as two halfwords
THUMB( mov r6, r6, lsr # ) @ to be robust against misaligned r3.
THUMB( strh r6, [r0] )
b __do_fixup_smp_on_up
ENDPROC(__do_fixup_smp_on_up) ENTRY(fixup_smp)
stmfd sp!, {r4 - r6, lr}
mov r4, r0
add r5, r0, r1
mov r3, #
bl __do_fixup_smp_on_up
ldmfd sp!, {r4 - r6, pc}
ENDPROC(fixup_smp) #ifdef CONFIG_ARM_PATCH_PHYS_VIRT /* __fixup_pv_table - patch the stub instructions with the delta between
* PHYS_OFFSET and PAGE_OFFSET, which is assumed to be 16MiB aligned and
* can be expressed by an immediate shifter operand. The stub instruction
* has a form of '(add|sub) rd, rn, #imm'.
*/
__HEAD
__fixup_pv_table:
adr r0, 1f
ldmia r0, {r3-r5, r7}
sub r3, r0, r3 @ PHYS_OFFSET - PAGE_OFFSET
add r4, r4, r3 @ adjust table start address
add r5, r5, r3 @ adjust table end address
add r7, r7, r3 @ adjust __pv_phys_offset address
str r8, [r7] @ save computed PHYS_OFFSET to __pv_phys_offset
mov r6, r3, lsr # @ constant for add/sub instructions
teq r3, r6, lsl # @ must be 16MiB aligned
THUMB( it ne @ cross section branch )
bne __error
str r6, [r7, #] @ save to __pv_offset
b __fixup_a_pv_table
ENDPROC(__fixup_pv_table) .align
: .long .
.long __pv_table_begin
.long __pv_table_end
: .long __pv_phys_offset .text
__fixup_a_pv_table:
#ifdef CONFIG_THUMB2_KERNEL
lsls r6, #
beq 2f
clz r7, r6
lsr r6, #
lsl r6, r7
bic r6, #0x0080
lsrs r7, #
orrcs r6, #0x0080
orr r6, r6, r7, lsl #
orr r6, #0x4000
b 2f
: add r7, r3
ldrh ip, [r7, #]
and ip, 0x8f00
orr ip, r6 @ mask in offset bits -
strh ip, [r7, #]
: cmp r4, r5
ldrcc r7, [r4], # @ use branch for delay slot
bcc 1b
bx lr
#else
b 2f
: ldr ip, [r7, r3]
bic ip, ip, #0x000000ff
orr ip, ip, r6 @ mask in offset bits -
str ip, [r7, r3]
: cmp r4, r5
ldrcc r7, [r4], # @ use branch for delay slot
bcc 1b
mov pc, lr
#endif
ENDPROC(__fixup_a_pv_table) ENTRY(fixup_pv_table)
stmfd sp!, {r4 - r7, lr}
ldr r2, 2f @ get address of __pv_phys_offset
mov r3, # @ no offset
mov r4, r0 @ r0 = table start
add r5, r0, r1 @ r1 = table size
ldr r6, [r2, #] @ get __pv_offset
bl __fixup_a_pv_table
ldmfd sp!, {r4 - r7, pc}
ENDPROC(fixup_pv_table) .align
: .long __pv_phys_offset .data
.globl __pv_phys_offset
.type __pv_phys_offset, %object
__pv_phys_offset:
.long
.size __pv_phys_offset, . - __pv_phys_offset
__pv_offset:
.long
#endif #include "head-common.S"