想直接学习卷积神经网络,结果发现因为神经网络的基础较弱,学习起来比较困难,所以准备一步步学。并记录下来,其中会有很多摘抄。
(一)什么是多层感知器和反向传播
1,单个神经元
神经网络的基本单元就是神经元,一个神经元就是处理输入并输出的小玩意,下面是一个图
3:ReLU:ReLU 代表修正线性单元。输出一个实值,并设定 0 的阈值(函数会将负值变为零)f(x) = max(0, x)。
偏置的重要性:偏置的主要功能是为每一个节点提供可训练的常量值(在节点接收的正常输入以外)。神经元中偏置的作用,详见这个链接:http://*.com/q/2480650/3297280
2,前馈神经网络
前馈神经网络是最先发明也是最简单的人工神经网络 [3]。它包含了安排在多个层中的多个神经元(节点)。相邻层的节点有连接或者边(edge)。所有的连接都配有权重
一个前馈神经网络的例子
一个前馈神经网络可以包含三种节点:
1. 输入节点(Input Nodes):输入节点从外部世界提供信息,总称为「输入层」。在输入节点中,不进行任何的计算——仅向隐藏节点传递信息。
2. 隐藏节点(Hidden Nodes):隐藏节点和外部世界没有直接联系(由此得名)。这些节点进行计算,并将信息从输入节点传递到输出节点。隐藏节点总称为「隐藏层」。尽管一个前馈神经网络只有一个输入层和一个输出层,但网络里可以没有也可以有多个隐藏层。
3. 输出节点(Output Nodes):输出节点总称为「输出层」,负责计算,并从网络向外部世界传递信息。
在前馈网络中,信息只单向移动——从输入层开始前向移动,然后通过隐藏层(如果有的话),再到输出层。在网络中没有循环或回路 [3](前馈神经网络的这个属性和递归神经网络不同,后者的节点连接构成循环)。
多层感知机就是前馈神经网络的一个例子(至少含有一个隐藏层)
多层感知器(Multi Layer Perceptron,即 MLP)包括至少一个隐藏层(除了一个输入层和一个输出层以外)。单层感知器只能学习线性函数,而多层感知器也可以学习非线性函数。
图 4:有一个隐藏层的多层感知器
图 4 表示了含有一个隐藏层的多层感知器。注意,所有的连接都有权重,但在图中只标记了三个权重(w0,,w1,w2)。
输入层:输入层有三个节点。偏置节点值为 1。其他两个节点从 X1 和 X2 取外部输入(皆为根据输入数据集取的数字值)。和上文讨论的一样,在输入层不进行任何计算,所以输入层节点的输出是 1、X1 和 X2 三个值被传入隐藏层。
隐藏层:隐藏层也有三个节点,偏置节点输出为 1。隐藏层其他两个节点的输出取决于输入层的输出(1,X1,X2)以及连接(边界)所附的权重。图 4 显示了隐藏层(高亮)中一个输出的计算。其他隐藏节点的输出计算同理。需留意 *f *指代激活函数。这些输出被传入输出层的节点。
输出层:输出层有两个节点,从隐藏层接收输入,并执行类似高亮出的隐藏层的计算。这些作为计算结果的计算值(Y1 和 Y2)就是多层感知器的输出。
给出一系列特征 X = (x1, x2, ...) 和目标 Y,一个多层感知器可以以分类或者回归为目的,学习到特征和目标之间的关系。
训练我们的多层感知器:反向传播算法常缩写为「BackProp」,是几种训练人工神经网络的方法之一。这是一种监督学习方法,即通过标记的训练数据来学习(有监督者来引导学习)。
简单说来,BackProp 就像「从错误中学习」。监督者在人工神经网络犯错误时进行纠正。一个人工神经网络包含多层的节点;输入层,中间隐藏层和输出层。相邻层节点的连接都有配有「权重」。学习的目的是为这些边缘分配正确的权重。通过输入向量,这些权重可以决定输出向量。在监督学习中,训练集是已标注的。这意味着对于一些给定的输入,我们知道期望 / 期待的输出(标注)。
反向传播算法
:
最初,所有的边权重(edge weight)都是随机分配的。对于所有训练数据集中的输入,人工神经网络都被激活,并且观察其输出。这些输出会和我们已知的、期望的输出进行比较,误差会「传播」回上一层。该误差会被标注,权重也会被相应的「调整」。该流程重复,直到输出误差低于制定的标准。
上述算法结束后,我们就得到了一个学习过的人工神经网络,该网络被认为是可以接受「新」输入的。该人工神经网络可以说从几个样本(标注数据)和其错误(误差传播)中得到了学习。
在分类任务中,我们通常在感知器的输出层中使用 Softmax 函数作为激活函数,以保证输出的是概率并且相加等于 1。Softmax 函数接收一个随机实值的分数向量,转化成多个介于 0 和 1 之间、并且总和为 1 的多个向量值。
第一步前向传播,利用训练集中的一个样本的输入特征,作为输入层,然后经过前向传播,得到输出值。
第二步利用输出值和样本值计算总误差再利用反向传播来更新权重。
反向传播的数学推到参考链接http://home.agh.edu.pl/~vlsi/AI/backp_t_en/backprop.html。今天先到这。。。