说在前面
在HashMap中,默认创建的数组长度是16,也就是哈希桶个数为16,当添加key-value的时候,会先计算出他们的哈希值(h = hash),然后用return h & (length-1)
就可以算出一个数组下标,这个数组下标就是键值对应该存放的位置。
但是,当数据较多的时候,不同键值对算出来的hash值相同,而导致最终存放的位置相同,这就是hash冲突,当出现hash冲突的时候,该位置的数据会转变成链表的形式存储,但是我们知道,数组的存储空间是连续的,所以可以直接使用下标索引来查取,修改,删除数据等操作,而且效率很高。而链表的存储空间不是连续的,所以不能使用下标 索引,对每一个数据的操作都要进行从头到尾的遍历,这样会使效率变得很低,特别是当链表长度较大的时候。为了防止链表长度较大,需要对数组进行动态扩容。
数组扩容需要申请新的内存空间,然后把之前的数据进行迁移,扩容频繁,需要耗费较多时间,效率降低,如果在使用完一半的时候扩容,空间利用率就很低,如果等快满了再进行扩容,hash冲突的概率增大!!那么什么时候开始扩容呢???
为了平衡空间利用率和hash冲突(效率),设置了一个加载因子(loadFactor
),并且设置一个扩容临界值(threshold = DEFAULT_INITIAL_CAPACITY * loadFactor
),就是说当使用了16*0.75=12个数组以后,就会进行扩容,且变为原来的两倍。
-
为什么加载因子是0.75呢?
先看一段源码注释:
Because TreeNodes are about twice the size of regular nodes, we
* use them only when bins contain enough nodes to warrant use
* (see TREEIFY_THRESHOLD). And when they become too small (due to
* removal or resizing) they are converted back to plain bins. In
* usages with well-distributed user hashCodes, tree bins are
* rarely used. Ideally, under random hashCodes, the frequency of
* nodes in bins follows a Poisson distribution
* (http://en.wikipedia.org/wiki/Poisson_distribution) with a
* parameter of about 0.5 on average for the default resizing
* threshold of 0.75, although with a large variance because of
* resizing granularity. Ignoring variance, the expected
* occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
* factorial(k)). The first values are:
*
* 0: 0.60653066
* 1: 0.30326533
* 2: 0.07581633
* 3: 0.01263606
* 4: 0.00157952
* 5: 0.00015795
* 6: 0.00001316
* 7: 0.00000094
* 8: 0.00000006
* more: less than 1 in ten million大概意思就是说,在理想情况下,使用随机哈希码,节点出现的频率在hash桶中遵循泊松分布,同时给出了桶中元素个数和概率的对照表。从上面的表中可以看到当桶中元素到达8个的时候,概率已经变得非常小,也就是说用0.75作为加载因子,每个碰撞位置的链表长度超过8个的概率达到了一百万分之一。