bulk-load 装载HDFS数据到HBase

时间:2024-12-02 19:05:31

bulk-load的作用是用mapreduce的方式将hdfs上的文件装载到hbase中,对于海量数据装载入hbase非常有用,参考http://hbase.apache.org/docs/r0.89.20100621/bulk-loads.html:



hbase提供了现成的程序将hdfs上的文件导入hbase,即bulk-load方式。它包括两个步骤(也可以一次完成):

1 将文件包装成hfile,hadoop jar /path/to/hbase.jar importtsv -Dimporttsv.columns=a,b,c <tablename> <inputdir>

比如:

  1. hadoop dfs -cat test/1
  2. 1       2
  3. 3       4
  4. 5       6
  5. 7       8

执行

  1. hadoop jar ~/hbase/hbase-0.90.2.jar importtsv -Dimporttsv.columns=HBASE_ROW_KEY,f1 t8 test

将会启动mapreduce程序在hdfs上生成t8这张表,它的rowkey分别为1 3 5 7,对应的value为2 4 6 8

注意,源文件默认以"\t"为分割符,如果需要换成其它分割符,在执行时加上-Dimporttsv.separator=",",则变成了以","分割



2 在上一步中,如果设置了输出目录,如

  1. hadoop jar ~/hbase/hbase-0.90.2.jar importtsv -Dimporttsv.bulk.output=tmp -Dimporttsv.columns=HBASE_ROW_KEY,f1 t8 test

那么t8表还暂时不会生成,只是将hfile输出到tmp文件夹下,我们可以查看tmp:

  1. hadoop dfs -du tmp
  2. Found 3 items
  3. 0           hdfs://namenode:9000/user/test/tmp/_SUCCESS
  4. 65254       hdfs://namenode:9000/user/test/tmp/_logs
  5. 462         hdfs://namenode:9000/user/test/tmp/f1

然后执行hadoop jar hbase-VERSION.jar completebulkload /user/todd/myoutput mytable将这个输出目录中的hfile转移到对应的region中,这一步因为只是mv,所以相当快。如:

hadoop jar ~/hbase/hbase-0.90.2.jar completebulkload tmp t8

然后

  1. hadoop dfs -du /hbase/t8/c408963c084d328490cc2f809ade9428
  2. Found 4 items
  3. 124         hdfs://namenode:9000/hbase/t8/c408963c084d328490cc2f809ade9428/.oldlogs
  4. 692         hdfs://namenode:9000/hbase/t8/c408963c084d328490cc2f809ade9428/.regioninfo
  5. 0           hdfs://namenode:9000/hbase/t8/c408963c084d328490cc2f809ade9428/.tmp
  6. 462         hdfs://namenode:9000/hbase/t8/c408963c084d328490cc2f809ade9428/f1

此时己经生成了表t8

注意,如果数据特别大,而表中原来就有region,那么会执行切分工作,查找数据对应的region并装载



        程序使用中注意:

1 因为是执行hadoop程序,不会自动查找hbase的config路径,也就找不到hbase的环境变量。因此需要将hbase-site.xml加入到hadoop-conf变量中

2 还需要将hbase/lib中的jar包放入classpath中

3 执行以上的步骤2时需要将zookeeper的配置写入core-site.xml中,因为在那一步时甚至不会读取hbase-site.xml,否则会连不上zookeeper