Area of Mushroom
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1748 Accepted Submission(s): 423
Problem Description
Teacher Mai has a kingdom with the infinite area.
He has n students guarding the kingdom.
The i-th student stands at the position (x i,y i), and his walking speed is v i.
If a point can be reached by a student, and the time this student walking to this point is strictly less than other students, this point is in the charge of this student.
For every student, Teacher Mai wants to know if the area in the charge of him is infinite.
He has n students guarding the kingdom.
The i-th student stands at the position (x i,y i), and his walking speed is v i.
If a point can be reached by a student, and the time this student walking to this point is strictly less than other students, this point is in the charge of this student.
For every student, Teacher Mai wants to know if the area in the charge of him is infinite.
Input
There are multiple test cases, terminated by a line "0".
For each test case, the first line contains one integer n(1<=n<=500).
In following n lines, each line contains three integers x i,y i,v i(0<=|x i|,|y i|,v i<=10^4).
For each test case, the first line contains one integer n(1<=n<=500).
In following n lines, each line contains three integers x i,y i,v i(0<=|x i|,|y i|,v i<=10^4).
Output
For each case, output "Case #k: s", where k is the case number counting from 1, and s is a string consisting of n character. If the area in the charge of the i-th student isn't infinite, the i-th character is "0", else it's "1".
Sample Input
3 0 0 3 1 1 2 2 2 1 0
Sample Output
Case #1: 100
Source
Recommend
题意:
给定n个人 包含坐标xy和速度v,如果一个点被一个人占有是指这个人比其他任何人都能先到达这个点。
对于这n个人中的第i个人,如果他占有的面积为无穷大,就输出1,否则输出0
第一次写凸包 记录一下
肯定速度最大的才有可能占有面积无穷
则所有最大速度的点构成的凸包上的点可以占有无穷面积
如果同一个点有两个速度都为最大的点(如果是一个最大,一个不是最大,那么最大的点如果在凸包上,则可以占领无穷的面积),则这两个点的结果都为0
#include <cstdio> #include <iostream> #include <vector> #include <algorithm> #include <cstring> #include <string> #include <map> #include <cmath> #include <queue> #include <set> using namespace std; //#define WIN #ifdef WIN typedef __int64 LL; #define iform "%I64d" #define oform "%I64d\n" #define oform1 "%I64d" #else typedef long long LL; #define iform "%lld" #define oform "%lld\n" #define oform1 "%lld" #endif #define S64I(a) scanf(iform, &(a)) #define P64I(a) printf(oform, (a)) #define P64I1(a) printf(oform1, (a)) #define REP(i, n) for(int (i)=0; (i)<n; (i)++) #define REP1(i, n) for(int (i)=1; (i)<=(n); (i)++) #define FOR(i, s, t) for(int (i)=(s); (i)<=(t); (i)++) const int INF = 0x3f3f3f3f; const double eps = 1e-8; const double PI = (4.0*atan(1.0)); const int maxn = 1000 + 20; struct Point { double x, y, v; int id; Point(double x=0, double y=0) : x(x), y(y) {} } A[maxn], B[maxn]; int ans[maxn]; typedef Point Vector; Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } bool cmp(Point a, Point b) { if(a.x != b.x) return a.x < b.x; return a.y < b.y; } bool cmpByV(Point a, Point b) { return a.v > b.v; } int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } int ConvexHull(Point * p, int n, Point * ch) { sort(p, p+n, cmp); int m = 0; for(int i=0; i<n; i++) { while(m > 1 && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) < 0) m--; ch[m++] = p[i]; } int k = m; for(int i=n-2; i>=0; i--) { while(m > k && dcmp(Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) < 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } Point ret[maxn]; int main() { int n; int kase = 1; //freopen("1002.in", "r", stdin); //freopen("1002_1.out", "w", stdout); while(scanf("%d", &n) != EOF && n) { double maxv = 0; for(int i=0; i<n; i++) { scanf("%lf%lf%lf", &A[i].x, &A[i].y, &A[i].v); A[i].id = i; maxv = max(maxv, A[i].v); } if(maxv < eps) { printf("Case #%d: ", kase++); for(int i=0; i<n; i++) putchar('0'); putchar('\n'); continue; } sort(A, A+n, cmpByV); int m = 0; while(m < n && dcmp(A[m].v-maxv) == 0) { B[m] = A[m]; m++; } sort(B, B+m, cmp); int t = 1; for(int i=1; i<m; i++) { if(dcmp(B[i].x - B[t-1].x) != 0 || dcmp(B[i].y - B[t-1].y) != 0) B[t++] = B[i]; } int rm = ConvexHull(B, t, ret); memset(ans, 0, sizeof(ans)); for(int i=0; i<rm; i++) { ans[ret[i].id] = 1; } for(int i=0; i<m; i++) { for(int j=i+1; j<m; j++) { if(dcmp(A[i].x - A[j].x) == 0 && dcmp(A[i].y - A[j].y) == 0) { ans[A[i].id] = ans[A[j].id] = 0; } } } printf("Case #%d: ", kase++); for(int i=0; i<n; i++) printf("%d", ans[i]); putchar('\n'); } return 0; }