An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.
Figure 1
Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2 lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.
Output Specification:
For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.
Sample Input:
6
Push 1
Push 2
Push 3
Pop
Pop
Push 4
Pop
Pop
Push 5
Push 6
Pop
Pop
Sample Output:
3 4 2 6 5 1
//这道题就是已知前序和中序遍历,得到后序遍历
//push为前序遍历,pop为中序遍历
#include <iostream>
#include <vector>
#include <stack>
#include <string>
using namespace std;
int N;
vector<int>preOrder, inOrder, posOrder;
struct Node
{
int val;
Node *l, *r;
Node(int a = ) :val(a), l(nullptr), r(nullptr) {};
};
Node* createTree(int preL, int preR, int inL, int inR)
{
if (preL > preR)
return nullptr;
Node* root = new Node(preOrder[preL]);
int i;
for (i = inL; i <= inR; ++i)//找到根节点
if (inOrder[i] == preOrder[preL])
break;
int num = i - inL;
root->l = createTree(preL + , preL + num, inL, i - );
root->r = createTree(preL + num + , preR, i + , inR);
return root;
}
void posOrderTree(Node *root)
{
if (root == nullptr)
return;
posOrderTree(root->l);
posOrderTree(root->r);
posOrder.push_back(root->val);
}
int main()
{ cin >> N;
string str;
stack<int>s;
int a;
for (int i = ; i < *N; ++i)
{
cin >> str;
if (str == "Push")
{
cin >> a;
s.push(a);
preOrder.push_back(a);
}
else
{
inOrder.push_back(s.top());
s.pop();
}
}
Node* root = createTree(, N - , , N - );
posOrderTree(root);
for (int i = ; i < N; ++i)
cout << posOrder[i] << (i == N - ? "" : " ");
return ;
}