前言
最近在看Peter Harrington写的“机器学习实战”,这是我的学习心得,这次是第11章 - 使用Apriori算法进行关联分析。
基本概念
关联分析(association analysis)或者关联规则学习(association rule learning)
这是非监督学习的一个特定的目标:发现数据的关联(association)关系。简单的说,就是那些数据(或者数据特征)会一起出现。
关联分析的目标包括两项:发现频繁项集和发现关联规则。首先需要找到频繁项集,然后才能获得关联规则。
频繁项集告诉我们哪些项集会经常出现,以及出现的支持概率。
关联规则告诉我们频繁项集中出现的关联规则,哪些原因项的出现决定另外一些结果项的出现,以及规则的可信概率。关联(association)
一个关联是一个满足最小支持度的项集。关联规则(association rule)
关联规则
\[X \Rightarrow Y \\Where \\\qquad X,Y\subseteq I \text{ and } X\cap Y=\emptyset \\\qquad \text{I: an items set}\]前提集(antecedent)
也称为前件、左手边。是关联规则\(X \Rightarrow Y\)的\(X\)部分。结果集(consequent)
也称为前后件、右手边。是关联规则\(X \Rightarrow Y\)的\(Y\)部分。项集 (items set)
一个项集包含一个或者多个元素项。
比如:{a} {b} {c} {ab} {ac} {bc} {abc}是7个项集。子集
{a} {b} {c} {ab} {ac} {bc} 都是的{abc}一个子集。超集
与子集相反:{ab}是{a}的一个超集。支持度(support)
关联项集的频繁度。可信度(confidence)
关联规则的可信度。
核心算法
Apriori算法:生成频繁项集
Apriori 是 A priori, “一个先验”的意思。可以说是一种发现关联的优化算法。
以购买商品为例,每条数据是一个交易的商品清单。我们是否可以发现哪些商品组合更容易出现?
客户可能购买1个商品,或者最多n个商品,如果商店一共有m个商品,那么共有种 \(\textstyle \coprod_{i=1}^n {m + 1 -i}\) 组合方式。
计算每种组合方式的出现概率虽然看起来简单,但是效率非常低。
Apriori生成频繁项集算法的原理说明
如果一个项集是非频繁集,那么它的所有超集也是非频繁的。
假设数据集中只有4元素:1234
可能的关联规则根据结果项的项数分为4个level:
发现{4}是一个低支持度项集,则在Level 2中剪除含有{4}的项集,以此类推。
Level 1: 1; 2; 3;4
Level 2: 12; 13;14; 23;24;34
Level 3: 123;124;134;234
Level 4:1234- 输入
- DateSet
- 最小支持度:Minimum Support
- 输出
- 项集[项数 - 1, 项集]
- 项集的支持度[项集, 支持度]
逻辑过程
因此,它先计算1个元素的概率,去掉不满足最小支持度的项集,得到项集集合C1和每个项集的支持度;
然后在项集集合C1的基础上,找2个元素的支持度(这时将不会考虑去掉的项集,所以性能会优化),再去掉不满足最小支持度的2项项集,得到项集C2和每个项集的支持度;
以此类推,直到得到项集Cm和每个项集的支持度。
Apriori算法:从频繁项集中生成关联规则
Apriori生成关联规则算法的原理说明
在一个频繁项集中,如果p -> h是一条低可信度规则,那么,所有其它以h的超集作为后件的规则,可信度也会较低。
关联规则是根据每个项集生成的。我们举个有4个项的项集为例:
项集:1234
可能的关联规则根据结果项的项数分为3个level:
发现[123 > 4]是一个低可信度规则,则在Level 2中剪除结果项集中含有{4}的规则,以此类推。
Level 1: 234 > 1; 134 > 2; 124 > 3;123 > 4
Level 2: 34 > 12; 24 > 13;23 > 14; 14 > 23;13 > 24;12 > 34
Level 3: 4 > 123;3 > 124;2 > 134;1 > 234- generateRules
- 输入
- 频繁项集[项数 - 1, 项集]
- 项集的支持度[项集, 支持度]
- 最小可信度:Minimum confidence
- 输出
- 关联规则[因项集,果项集,可信度]
- 逻辑过程
- 输入
对每个Level的项集(Level>0):
对当前Level的每个项集:
获取项集的元素List.
如果Level = 1(2个项数的项集):
calculateConfidence(当前项集,元素List,项集的支持度,关联规则, 最小可信度)
如果Level > 1(至少3个项数的项集):
rulesFromConsequence(当前项集,元素List,项集的支持度,关联规则, 最小可信度)
- calculateConfidence
- 输入
- 项集
- 目标项集List
- 项集的支持度[项集, 支持度]
- 关联规则[因项集,果项集,可信度]
- 最小可信度:Minimum confidence
- 输出
- 有效目标集
- 逻辑过程
- 输入
对每个目标项集
计算当前目标项集在当前项集上的可信度。
如果可信度大于最小可信度:
把[当前项集 - 目标项集, 目标项集, 可信度]加入关联规则;
把当前目标项集加入有效目标集。
返回有效目标集
- rulesFromConsequence
- 输入
- 项集
- 目标项集List
- 项集的支持度[项集, 支持度]
- 关联规则[因项集,果项集,可信度]
- 最小可信度:Minimum confidence
- 输出
- 无
- 逻辑过程
- 输入
得到目标项集长度m.
如果当前项集元素的长度 > m + 1:
得到目标项集元素个数为m + 1的目标项集List。
有效目标集 = calculateConfidence(当前项集,目标项集,项集的支持度,关联规则, 最小可信度)
如果有效目标集的长度 > 1:
rulesFromConsequence(当前项集,有效目标集,项集的支持度,关联规则, 最小可信度)。
核心公式
支持度(support level):
\[S(C, X) = \frac{count(C)}{len(X)} \\where \\\qquad S(C, X) : 项集C的支持度 \\\qquad C : 项集 \\\qquad X : 数据集\]可信度(confidence level): 一条规则P -> H的可信度定义为:
\[C(P, H) = \frac{support(P | H)}{support(P)} \\where \\\qquad C(P, H) : 关联规则P -> H的可信度 \\\qquad P : 项集 \\\qquad H : 项集 \\\qquad support(P) : 项集P的支持度 \\\qquad support(P | H) : 项集P,H并集的支持度\]
参考
- Machine Learning in Action by Peter Harrington