快速排序,时间复杂度O(N*logN),要能熟练掌握!
以下主要参考http://blog.****.net/morewindows/article/details/6684558, 感谢原博主!
该方法的基本思想是:
1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。
虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤。因此我的对快速排序作了进一步的说明:挖坑填数+分治法:
先来看实例吧,定义下面再给出(最好能用自己的话来总结定义,这样对实现代码会有帮助)。
以一个数组作为示例,取区间第一个数为基准数。
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
72 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
48 |
85 |
初始时,i = 0; j = 9; X = a[i] = 72
由于已经将a[0]中的数保存到X中,可以理解成在数组a[0]上挖了个坑,可以将其它数据填充到这来。
从j开始向前找一个比X小或等于X的数。当j=8,符合条件,将a[8]挖出再填到上一个坑a[0]中。a[0]=a[8]; i++; 这样一个坑a[0]就被搞定了,但又形成了一个新坑a[8],这怎么办了?简单,再找数字来填a[8]这个坑。这次从i开始向后找一个大于X的数,当i=3,符合条件,将a[3]挖出再填到上一个坑中a[8]=a[3]; j--;
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
88 |
60 |
42 |
83 |
73 |
88 |
85 |
i = 3; j = 7; X=72
再重复上面的步骤,先从后向前找,再从前向后找。
从j开始向前找,当j=5,符合条件,将a[5]挖出填到上一个坑中,a[3] = a[5]; i++;
从i开始向后找,当i=5时,由于i==j退出。
此时,i = j = 5,而a[5]刚好又是上次挖的坑,因此将X填入a[5]。
数组变为:
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
48 |
6 |
57 |
42 |
60 |
72 |
83 |
73 |
88 |
85 |
可以看出a[5]前面的数字都小于它,a[5]后面的数字都大于它。因此再对a[0…4]和a[6…9]这二个子区间重复上述步骤就可以了。
最后是代码实现:
#include <iostream>
using namespace std; void QuickSort(int m[], int l, int r) {
int i = l, j = r, baseNumber = m[l]; if (l < r) {
while (i < j) {
//First Right
while (i < j && m[j] > baseNumber)
j--; if (i < j)
m[i++] = m[j]; //Second Left
while (i < j && m[i] <= baseNumber)
i++; if (i < j)
m[j--] = m[i];
} m[i] = baseNumber;
QuickSort(m, l, i - );
QuickSort(m, i + , r);
}
} int main() {
int m[] = {, , , , , , , , , };
QuickSort(m, , );
for (int i = ; i < ; i++)
cout << m[i] << " "; return ;
}