cs231n:线性svm与softmax
参数信息:
权重 W:(D,C)
训练集 X:(N,D),标签 y:(N,1)
偏置量bias b:(C,1)
N:训练样本数; D:样本Xi 的特征维度,Xi = [ Xi1,Xi2,...,XiD]; C:类别数量
正则化系数 λ :控制正则化的强度
delta / Δ : 间隔
linear svm:
对训练样本(Xi,yi),其对应每个类别的得分为:
score = W*Xi+ b
是长度为C的矢量,以s表示 score, s = [s1, s2, s3, ..., sC] = [W1*Xi, W2*Xi, W3*Xi, ..., WC*Xi]
Xi对应的损失(hinge loss):
loss[i] = ∑j≠yi max(0,sj - syi + delta)
总的损失,加入正则化项 R(W):
loss = (1/N)*ΣNi=1 loss[i] + R(W) = (1/N)*ΣNi=1 ∑j≠yi max(0,sj - syi + delta)+ λ*Σi Σj Wi,j2
softmax:
对训练样本(Xi,yi), 利用 yi 构造长度为C的矢量 p = [0, 0, 0, ..., 1, ...],第 yi 位置为 1,其余为 0,
先计算每个类别的得分:
score = W*Xi+ b ,与上同
但是softmax继续对得分进行 归一化处理,得到 Xi 在每个类别的概率:
h = exp(s) / Σexp(s),
即有 h = [h1, h2, ..., hC],hj = exp(sj) / ΣCk=1 exp(sk)
Xi对应的损失(交叉熵损失 cross-entropy loss):
loss[i] = -∑log( p*h) = -∑Cj=1 log(pj*hj)= -log(hyi)
总的损失,加入正则化项 R(W):
loss = (1/N)* ΣNi=1 loss[i] + R(W) = -(1/N)*ΣNi=1 log{ exp(syi) / ΣNk=1 exp(sk) } + λ*Σi Σj Wi,j2
softmax 梯度计算:
对 loss 关于 w 进行求导即可得到梯度∂L/∂wj ,w = [w1, w2, w3, ... , wC],wj 是 Dx1的列向量
∂L / ∂wj = -(1/N) * ΣNi=1 Xi*[ 1{yi=j} - hj ]
梯度方向即是,w沿着梯度变化时,loss值变化最快的方向。利用梯度对loss进行优化,
(求w)从而最小化 loss
利用SGD训练
W := W - ∂L / ∂wj
算法程序:
1. 随机初始化 w
2. 迭代( 一定次数 或者 前后两次迭代是 loss 差值小于阈值 )
repeat {
2.1 计算 loss,计算梯度∂L / ∂wj
2.2 更新w
w := w - 2. 计算梯度∂L / ∂wj
}
讨论:
1. linear svm的关键在于将样本的正类别得分score[yi]与 负类别得分score[-]区分开,只要正、负类别得分的差值大于 delta,就认为样本的分类结果正确,分类损失loss = 0;
它并不关心正负类别得分的细节,比如,对于某三分类,正类别是 1 (delta = 1),在svm看来,得分s1 = [ 10, 9, 9] 与得分s2 = [10, -10, -10] 结果是一样的,都能够得到正确分类结果,所以二者的损失都是 0;
2. softmax 不仅要求样本的正、负类别概率(其实是将类别得分score归一化后用概率表示)能够区分开,而且还想尽力使它们之间的差值越大越好;softmax即使对样本正确进行分类,其分类损失 loss 也 不为0,正、负类别的概率差值越大,其损失 loss就越小。比如,同样的三分类,正类别是 1,在softmax看来,得分s1 = [ 10, 9, 9] 与得分 s2 = [10, -10, -10] 分类结果虽然是一样的,但是他们的损失却不一样,
loss[s1] = -log( [1,0,0] * [0.57611688, 0.21194156, 0.21194156] ) = 0.5514,
loss[s2] = -log( [1,0,0] * [ 0.999999996, 0.000000002, 0.000000002] ) = 0.000000004
所以softmax会认为s2比s1分类损失小。从而在分类中,softmax会尽力使正类概率大,而负类概率小
3. linear svm上述特性既是不足,也是优点,比如在分类时,在A类,B类已经有不同得分,可以分开的情况下,不必再花费精力尽力使A、B两类的得分差别变大。