C语言的算法--------二分法查找

时间:2023-03-08 17:25:19
C语言的算法--------二分法查找

int find(int n,int a[],int l)
{
int low=0;
int high=l-1;
int middle=0;
while(low<high)
{
middle=(low+high)>>1;
if(n==a[middle])
{
printf("%d,%d",n,middle);
return 1;

}
else if(n>a[middle])
low=middle+1;

else
high=middle-1;

}

return 0;

}

int main()

{
int a[]={2,3,5,6,7,8,9,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60};
int l=sizeof(a)/sizeof(a[0]);
int i=0,n;
printf("arry content");
for(i=0;i<l;i++)
{
if(i%8==0)
printf("\n");
printf("%4d",a[i]);

}
printf("\nseach n is ");
scanf("%d",&n);
if(!find(n,a,l))
printf("not fond");
return 0;

}

二分查找的基本思想是:(设R[low..high]是当前的查找区间)
 (1)首先确定该区间的中点位置:
                 
 (2)然后将待查的K值与R[mid].key比较:若相等,则查找成功并返回此位置,否则须确定新的查找区间,继续二分查找,具体方法如下:
     ①若R[mid].key>K,则由表的有序性可知R[mid..n].keys均大于K,因此若表中存在关键字等于K的结点,则该结点必定是在位置mid左边的子表R[1..mid-1]中,故新的查找区间是左子表R[1..mid-1]。
     ②类似地,若R[mid].key<K,则要查找的K必在mid的右子表R[mid+1..n]中,即新的查找区间是右子表R[mid+1..n]。下一次查找是针对新的查找区间进行的。
     因此,从初始的查找区间R[1..n]开始,每经过一次与当前查找区间的中点位置上的结点关键字的比较,就可确定查找是否成功,不成功则当前的查找区间就缩小一半。这一过程重复直至找到关键字为K的结点,或者直至当前的查找区间为空(即查找失败)时为止。

二分查找算法
    int BinSearch(SeqList R,KeyType K)
      { //在有序表R[1..n]中进行二分查找,成功时返回结点的位置,失败时返回零
        int low=1,high=n,mid; //置当前查找区间上、下界的初值
        while(low<=high){ //当前查找区间R[low..high]非空
          mid=(low+high)/2;
          if(R[mid].key==K) return mid; //查找成功返回
          if(R[mid].kdy>K)
             high=mid-1; //继续在R[low..mid-1]中查找
          else
             low=mid+1; //继续在R[mid+1..high]中查找
         }
        return 0; //当low>high时表示查找区间为空,查找失败
       } //BinSeareh

二分查找的优点和缺点
  虽然二分查找的效率高,但是要将表按关键字排序。而排序本身是一种很费时的运算。既使采用高效率的排序方法也要花费O(nlgn)的时间。
  二分查找只适用顺序存储结构。为保持表的有序性,在顺序结构里插入和删除都必须移动大量的结点。因此,二分查找特别适用于那种一经建立就很少改动、而又经常需要查找的线性表。
  对那些查找少而又经常需要改动的线性表,可采用链表作存储结构,进行顺序查找。链表上无法实现二分查找。

二分法排序

#include <stdlib.h>
#include <stdio.h>
void TwoInsertSort(int array[],int n)
{
      int left,right,num;
      int middle,j,i;
      for(i = 1;i < n;i++)
      {
          left = 0;// 准备
          right = i-1;
          num = array[i];         
          while( right >= left)// 二分法查找插入位置
          {
              middle = ( left + right ) / 2; // 指向已排序好的中间位置
              if( num < array[middle] )// 即将插入的元素应当在在左区间
      right = middle-1;
     else                    // 即将插入的元素应当在右区间
      left = middle+1;    
          }
          for( j = i-1;j >= left;j-- )// 后移排序码大于R[i]的记录
              array[j+1] = array[j];
          array[left] = num;// 插入
      }
}

int rcmp( const int *a, const int *b)
{
 return (*a-*b);
}
void main() 
{
 int array[50];
 int i;
 printf("The original array is :\n");
 for( i=0; i<50; i++ )//数组初始化并显示
 {
  array[i] = 50-i;
  printf("array[%d]:%d\n", i, array[i]);
 }
 TwoInsertSort(array,sizeof(array)/sizeof(int));//二分法排序
 printf("\nAfter sorted :\n");
 for( i=0; i<50; i++ )
  printf("array[%d]:%d\n", i, array[i]);

//库函数bsearch用二分法查找一个有序数组中的一个特定数,并返回该数的地址

a = (int *)bsearch(&b, numarray, sizeof(numarray)/sizeof(numarray[0]), sizeof(int),rcmp);

}