All our characters have hobbies. The same is true for Fedor. He enjoys shopping in the neighboring supermarket.
The goods in the supermarket have unique integer ids. Also, for every integer there is a product with id equal to this integer. Fedor has n discount coupons, the i-th of them can be used with products with ids ranging from li to ri, inclusive. Today Fedor wants to take exactly k coupons with him.
Fedor wants to choose the k coupons in such a way that the number of such products x that all coupons can be used with this product x is as large as possible (for better understanding, see examples). Fedor wants to save his time as well, so he asks you to choose coupons for him. Help Fedor!
Input
The first line contains two integers n and k (1 ≤ k ≤ n ≤ 3·105) — the number of coupons Fedor has, and the number of coupons he wants to choose.
Each of the next n lines contains two integers li and ri ( - 109 ≤ li ≤ ri ≤ 109) — the description of the i-th coupon. The coupons can be equal.
Output
In the first line print single integer — the maximum number of products with which all the chosen coupons can be used. The products with which at least one coupon cannot be used shouldn't be counted.
In the second line print k distinct integers p1, p2, ..., pk (1 ≤ pi ≤ n) — the ids of the coupons which Fedor should choose.
If there are multiple answers, print any of them.
Example
4 2
1 100
40 70
120 130
125 180
31
1 2
3 2
1 12
15 20
25 30
0
1 2
5 2
1 10
5 15
14 50
30 70
99 100
21
3 4
Note
In the first example if we take the first two coupons then all the products with ids in range [40, 70] can be bought with both coupons. There are 31 products in total.
In the second example, no product can be bought with two coupons, that is why the answer is 0. Fedor can choose any two coupons in this example.
题意:取n个区间中的k个,使得其交集最大
题解:排序左边界,枚举之,再创建一个k大小的右边界队列,维护其队首为最大能取的右边界。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn = ;
struct node{
int a,b;
int s; friend bool operator < (node x,node y){
return x.b > y.b;
}
}k[maxn];
bool cmp(node x,node y){
return x.a < y.a;
} int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
scanf("%d%d",&k[i].a,&k[i].b);
k[i].s=i+;
} priority_queue<node> q;
sort(k,k+n,cmp); int ans = ; int l = ;
for(int i=;i<n;i++){ q.push(k[i]);
if(q.size()>m)
q.pop();
int left = k[i].a;
int right = q.top().b; if(right - left + > ans && q.size() == m){
l = left;
ans = right - left + ;
}
} cout<<ans<<endl;
if(ans!=)
for(int i=;i<n && m;i++){
if(l>=k[i].a && ans+l-<=k[i].b){
cout<<k[i].s<<" ";
m--;
}
}
else
for(int i=;i<m;i++)
cout<<i+<<" "; return ;
}