Surround the Trees---hdu1392(凸包GraHam模板)

时间:2024-11-13 12:35:14

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1392

题意:有n棵树,每棵树有一个坐标,想用一些绳子把这些树包含起来,求需要绳子的长度;

就是求凸包的周长的,把凸包各边的长度加起来就好了;注意n<=2的情况,运用GraHam算法,时间复杂度是O(nlogn);

GraHam算法的过程:

Surround the Trees---hdu1392(凸包GraHam模板)

#include <stdio.h>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
#define met(a, b) memset(a, b, sizeof(a))
const double eps = 1e-;
const double PI = acos(-);
const int N = ; struct point
{
double x, y;
point(double x=, double y=) : x(x), y(y){}
friend point operator - (const point& p1, const point& p2)
{
return point(p1.x-p2.x, p1.y-p2.y);
}
friend double operator ^ (const point& p1, const point& p2)
{
return p1.x*p2.y - p1.y*p2.x;
}
}p[N], res[N]; double Dist(point p1, point p2)
{
double dx = p1.x - p2.x, dy = p1.y - p2.y;
return sqrt(dx*dx + dy*dy);
}
bool cmp1(point p1, point p2)
{
if(p1.y == p2.y)
return p1.x < p2.x;
return p1.y < p2.y;
}
bool cmp2(point p1, point p2)///极角排序;若极角相同,距离近的在前面;
{
double k = (p1-p[])^(p2-p[]);
if( k>eps || (fabs(k)<eps && Dist(p1, p[]) < Dist(p2, p[]) ))
return ;
return ;
}
int Graham(int n)///返回凸包的点的个数;
{
res[] = p[];if(n == ) return ;
res[] = p[];if(n == ) return ;
int top = ;
for(int i=; i<n; i++)
{
while(top && ((res[top]-res[top-])^(p[i]-res[top-])) <= ) top--;
res[++top] = p[i];
}
return top+;
} int main()
{
int n;
while(scanf("%d", &n), n)
{
for(int i=; i<n; i++)
scanf("%lf %lf", &p[i].x, &p[i].y); if(n == || n == )
{
printf("0\n");
continue;
}
if(n == )
{
printf("%.2f\n", Dist(p[], p[]));
continue;
} sort(p, p+n, cmp1);///p[0]为最下方靠左的点;
sort(p+, p+n, cmp2);///以p[0]为基点,按叉积进行排序; int cnt = Graham(n);///求凸包的顶点个数cnt+1,保存在res中,下标从0开始; double ans = Dist(res[], res[cnt-]);
for(int i=; i<cnt; i++)
ans += Dist(res[i], res[i-]); printf("%.2f\n", ans);
}
return ;
}