LA 4119 (差分数列 多项式) Always an integer

时间:2024-11-08 18:35:07

题意:

给出一个形如(P)/D的多项式,其中P是n的整系数多项式,D为整数。

问是否对于所有的正整数n,该多项式的值都是整数。

分析:

可以用数学归纳法证明,若P(n)是k次多项式,则P(n+1) - P(n)为k-1次多项式。

P是n的一次多项式时,P是一个等差数列,只要验证P(1)和P(2)是D的倍数即可。

P是n的二次多项式时,只要验证第一项为D的倍数,且相邻两项的差值也是D的倍数即可。相邻两项的差值为一次多项式,所以要验证两项,加上前面验证的第一项,所以共验证P(1)、P(2)和P(3)三项。

一般地,要验证k次多项式,只要验证P(1)...P(k+1)即可。

计算多项式的值可以用高中数学课本讲到过的秦九韶算法。

 #include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <cstdlib>
using namespace std; const int maxn = + ;
int a[maxn], p;//a[i]表示n^i对应的系数,p为最高系数 void parse_polynomial(string s)
{
int i = , len = s.size();
while(i < len)
{
int sign = ;
if(s[i] == '+') i++;
if(s[i] == '-') { i++; sign = -; }
int v = ;//系数
while(i < len && isdigit(s[i])) v = v * + s[i++] - '';
v *= sign;
if(i == len) a[] = v;//常数项
else
{
if(v == ) v = sign;
int u = ;//没有指数
if(s[++i] == '^')//有指数
{
u = ;
i++;
while(isdigit(s[i])) u = u * + s[i++] - '';
}
a[u] = v;
if(u > p) p = u;
}
}
} int mod(int x, int MOD)
{
int ans = ;
for(int i = p; i >= ; i--)
{
ans = (long long) ans * x % MOD;//注意不要溢出
ans = ((long long) ans + a[i]) % MOD;
}
return ans;
} bool check(string& expr)
{
int p = expr.find('/');
parse_polynomial(expr.substr(, p-));
int D = atoi(expr.substr(p+).c_str());
for(int i = ; i <= p+; i++)
if(mod(i, D) != ) return false;
return true;
} int main()
{
//freopen("in.txt", "r", stdin); int kase = ;
string expr;
while(cin >> expr)
{
if(expr[] == '.') break;
memset(a, , sizeof(a));
p = ;
printf("Case %d: %s\n", kase++, check(expr) ? "Always an integer" : "Not always an integer");
} return ;
}

代码君