RSA
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2353 Accepted Submission(s): 1677
> choose two large prime integer p, q
> calculate n = p × q, calculate F(n) = (p - 1) × (q - 1)
> choose an integer e(1 < e < F(n)), making gcd(e, F(n)) = 1, e will be the public key
> calculate d, making d × e mod F(n) = 1 mod F(n), and d will be the private key
You can encrypt data with this method :
C = E(m) = me mod n
When you want to decrypt data, use this method :
M = D(c) = cd mod n
Here, c is an integer ASCII value of a letter of cryptograph and m is an integer ASCII value of a letter of plain text.
Now given p, q, e and some cryptograph, your task is to "translate" the cryptograph into plain text.
case will begin with four integers p, q, e, l followed by a line of
cryptograph. The integers p, q, e, l will be in the range of 32-bit
integer. The cryptograph consists of l integers separated by blanks.
each case, output the plain text in a single line. You may assume that
the correct result of plain text are visual ASCII letters, you should
output them as visualable letters with no blank between them.
7716 7746 7497 126 8486 4708 7746 623 7298 7357 3239
using namespace std;
#define LL long long
#define lld long long
void exGcd (lld a, lld b, lld &d, lld &x, lld &y)
{
if (b == 0)
{
x = 1 ;
y = 0 ;
d = a ;
return ;
}
exGcd (b, a%b, d, x, y) ;
lld tmp = x ;
x = y ;
y = tmp - a/b*y ;
}
LL qpow(LL a,LL b,LL c)
{
LL r=1;
while(b){
if(b&1) r=r*a%c;
a=a*a%c;
b>>=1;
}
return r;
}
int main()
{
LL p,q,e,n,fn,l;
lld d,x,y;
while(cin>>p>>q>>e>>l){n=p*q;
fn=(p-1)*(q-1);
exGcd(e,fn,d,x,y);
x=(x%fn+fn)%fn;
for(int i=1;i<=l;++i){
LL num;
scanf("%lld",&num);
printf("%c",qpow(num,x,n));
}cout<<endl;
}
return 0;
}