3、朋友圈(25分)
假如已知有n个人和m对好友关系(存于数字r)。如果两个人是直接或间接的好友(好友的好友的好友...),则认为他们属于同一个朋友圈,请写程序求出这n个人里一共有多少个朋友圈。
假如:n = 5 , m = 3 , r = {{1 , 2} , {2 , 3} , {4 , 5}},表示有5个人,1和2是好友,2和3是好友,4和5是好友,则1、2、3属于一个朋友圈,4、5属于另一个朋友圈,结果为2个朋友圈。
最后请分析所写代码的时间、空间复杂度。评分会参考代码的正确性和效率。
C/C++:
int friends(int n , int m , int* r[]);
Java:
int friends(int n , int m , int[][] r);
在网上有种解法,摘抄于下
http://blog.csdn.net/hackbuteer1/article/details/8484974
// 简单的并查集应用
int set[10001];
inline int find(int x) //带路径优化的并查集查找算法
{
int i , j , r;
r = x;
while(set[r] != r)
r = set[r];
i = x;
while(i != r)
{
j = set[i];
set[i] = r;
i = j;
}
return r;
}
inline void merge(int x , int y) //优化的并查集归并算法
{
int t = find(x);
int h = find(y);
if(t < h)
set[h] = t;
else
set[t] = h;
}
int friends(int n , int m , int* r[])
{
int i , count;
for(i = 1 ; i <= n ; ++i) //初始化并查集,各点为孤立点,分支数为n
set[i] = i;
for(i = 0 ; i < m ; ++i)
merge(r[i][0] , r[i][1]);
count = 0;
for(i = 1 ; i <= n ; ++i)
{
if(set[i] == i)
++count;
}
return count;
}
这种解法代码简洁,唯一的不足是set没有动态建立