1.题目描述:
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 11338 | Accepted: 3947 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
.
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
Hint
To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).
Source
2.题意概述:
给定n个二元组(a,b),扔掉k个二元组,使得剩下的a元素之和与b元素之和的比率最大。题目求的是 max(∑a[i] * x[i] / (b[i] * x[i])) 其中a,b都是一一对应的。 x[i]取0,1 并且 ∑x[i] = n - k。
3.解题思路:
令r = ∑a[i] * x[i] / (b[i] * x[i]) 则必然∑a[i] * x[i] - ∑b[i] * x[i] * r= 0;(条件1)并且任意的 ∑a[i] * x[i] - ∑b[i] * x[i] * max(r) <= 0 (条件2,只有当∑a[i] * x[i] / (b[i] * x[i]) = max(r) 条件2中等号才成立)然后就可以枚举r , 对枚举的r, 求Q(r) = ∑a[i] * x[i] - ∑b[i] * x[i] * r 的最大值, 为什么要求最大值呢? 因为我们之前知道了条件2,所以当我们枚举到r为max(r)的值时,显然对于所有的情况Q(r)都会小于等于0,并且Q(r)的最大值一定是0.而我们求最大值的目的就是寻找Q(r)=0的可能性,这样就满足了条件1,最后就是枚举使得Q(r)恰好等于0时就找到了max(r)。而如果能Q(r)>0 说明该r值是偏小的,并且可能存在Q(r)=0,而Q(r)<0的话,很明显是r值偏大的,因为max(r)都是使Q(r)最大值为0,说明不可能存在Q(r)=0了。
4.AC代码:
#include <cstdio> #include <iostream> #include <cstring> #include <string> #include <algorithm> #include <functional> #include <cmath> #include <vector> #include <queue> #include <map> #include <set> #include <ctime> using namespace std; typedef long long ll; #define INF 0x7fffffff #define maxn 1111 #define eps 1e-15 #define pi acos(-1.0) #define e 2.718281828459 #define mod (int)1e9 + 7; double a[maxn], b[maxn], y[maxn]; int n, k; int judge(double x) { for (int i = 0; i < n; i++) y[i] = a[i] - x * b[i]; sort(y, y + n, greater<double>()); double sum = 0; for (int i = 0; i < n - k; i++) sum += y[i]; return sum >= 0; } int main() { /* #ifdef ONLINE_JUDGE freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #endif */ while (~scanf("%d%d", &n, &k), n + k) { for (int i = 0; i < n; i++) scanf("%lf", &a[i]); for (int i = 0; i < n; i++) scanf("%lf", &b[i]); double l = 0, r = INF, m; while (r - l > eps) { m = l + (r - l) / 2; if (judge(m)) l = m; else r = m; } printf("%.0lf\n", m * 100); } return 0; }