二维费用的背包问题是指对于每件物品,具有两种不同的费用,选择这件物品必须同时付出这两种代价,对于每种代价都有一个可付出的最大值(背包容量),求选择物品可以得到最大的价值。设第i件物品所需的两种代价分别为v[i]和u[i],两种代价可付出的最大值(两种背包容量)分别为V和U,物品的价值为w[i]。
分析:相比经典的01背包问题,二维费用背包问题增加了一维费用,于是我们需要在状态上增加一维。设s[i][j][k]表示将前i件物品放入两种容量分别为j和k的背包时所能获得的最大价值,则状态转移方程为s[i][j][k]=max{s[i-1][j][k], s[i-1][j-v[i]][k-u[i]]+w[i]},递推边界为当i=0时s[i][j][k]=0。和01背包类似,状态的维数可以轻易的从三维降低到二维,具体实现见代码。
代码:
1 for (int i=0; i<=V; i++) 2 { 3 for (int j=0; j<=U; j++) s[i][j]=0; // 边界 4 } 5 for (int i=1; i<=N; i++) 6 { 7 for (int j=V; j>=v[i]; j--) 8 { 9 for (int k=U; k>=u[i]; k--) s[j][k]=max(s[j][k], s[j-v[i]][k-u[i]]+w[i]); 10 } 11 }
总结:二维费用背包的完全背包问题以及多重背包问题均与01背包类似。由二维费用背包问题我们可以推知多维费用背包其实就是增加状态维数,其他类型的DP问题如果是通过原型问题增加限制条件改编而来,应该也可以通过类似的增加状态维数来解决。
地址:http://acm.hdu.edu.cn/showproblem.php?pid=2159
思路:动态规划dp之二维完全背包问题
代码:
1 #include <stdio.h> 2 #include <stdlib.h> 3 #include <string.h> 4 #include <math.h> 5 #include <algorithm> 6 #include <iostream> 7 using namespace std; 8 #define N 110 9 int dp[N][N];//二维的 10 int a[N],b[N]; 11 int max(int x,int y) 12 { 13 return x>y?x:y; 14 } 15 int main() 16 { 17 int n,m,k,s,i,j,l; 18 while(scanf("%d%d%d%d",&n,&m,&k,&s)!=EOF) //n为经验,m为忍耐度,k为怪的种数,s为最多杀的怪 19 { 20 for(i=0;i<k;i++) 21 scanf("%d%d",&a[i],&b[i]); //得到的经验值和会减掉的忍耐度 22 memset(dp,0,sizeof(dp)); 23 for(i=0;i<k;i++) //杀怪的循环 24 { 25 for(j=1;j<=s;j++) //限制条件,最多的杀怪数s 26 { 27 for(l=b[i];l<=m;l++) //二维背包问题的第二个for循环 28 dp[j][l]=max(dp[j][l],dp[j-1][l-b[i]]+a[i]); //dp[j][l]它表示 用掉了l点的忍耐度,并且杀了j个怪后,所获得的最大经验数 29 } 30 } 31 for(i=0;i<=m;i++) //i之所以从0开始到m是由于dp[j][l]它表示 用掉了l点的忍耐度,并且杀了j个怪后,所获得的最大经验数 32 if(dp[s][i]>=n) break; //即用掉了m点的忍耐度,并且杀了s只怪兽后,所获得的最大经验数 33 if(dp[s][i]<n) //break即跳出后还小于升级所需经验值时。。。 34 printf("-1\n"); //即如果在杀掉s只怪兽后所得的经验值小于还需要的经验值的话就无法升级输出-1 35 else 36 printf("%d\n",m-i); ////在杀了s只怪兽后,用掉了i大小的忍耐度,则还能保留的最大忍耐度是m-i 37 } 38 return 0; 39 }