SPOJ 2832 DETER3 - Find The Determinant III(矩阵行列式)

时间:2021-12-31 18:36:56

DETER3 - Find The Determinant III

no tags  点击打开链接

Given a NxN matrix A, find the Determinant of A % P.

Input

Multiple test cases (the size of input file is about 3MB, all numbers in each matrix are generated randomly).

The first line of every test case contains two integers , representing N (0 < N < 201) and P (0 < P < 1,000,000,001). The following N lines each contain N integers, the j-th number in i-th line represents A[i][j] (- 1,000,000,001 < A[i][j] < 1,000,000,001).

Output

For each test case, print a single line contains the answer.

Example

Input:
1 10
-528261590
2 2
595698392 -398355861
603279964 -232703411
3 4
-840419217 -895520213 -303215897
537496093 181887787 -957451145
-305184545 584351123 -257712188

Output:
0
0
2


求出矩阵的行列式,模p 伪代码: SPOJ 2832 DETER3 - Find The Determinant III(矩阵行列式)
 #include <map>
#include <set>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const double pi = acos(-1);
const int inf = 0x3f3f3f3f;
const double eps = 1e-15;
typedef long long LL;
typedef pair <int, int> PLL;
const int N = 300;

LL mat[N][N];
LL Det (int n, int mod) //按列化为下三角
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
mat[i][j] %= mod;
}
}

LL res = 1;
for(int i = 0; i < n; ++i)
{
if (!mat[i][i])
{
bool flag = false;
for (int j = i + 1; j < n; ++j)
{
if (mat[j][i])
{
flag = true;
for (int k = i; k < n; ++k)
{
swap (mat[i][k], mat[j][k]);
}
res = -res;
break;
}
}

if (!flag)
{
return 0;
}
}

for (int j = i + 1; j < n; ++j)
{
while (mat[j][i])
{
LL t = mat[i][i] / mat[j][i];
for (int k = i; k < n; ++k)
{
mat[i][k] = (mat[i][k] - t * mat[j][k]) % mod;
swap (mat[i][k], mat[j][k]);
}
res = -res;
}
}
res = (res * mat[i][i]) % mod;
}
return (res + mod) % mod;
}
int main()
{
freopen("in.txt","r",stdin);
int n;
LL p;
while (~scanf("%d%I64d",&n, &p))
{
for (int i = 0; i < n; ++i)
{
for (int j = 0; j < n; ++j)
{
scanf("%I64d",&mat[i][j]);
}
}
LL ans = Det (n, p);
printf("%I64d\n",ans);
}
return 0;
}