CODEVS 1062 路由选择

时间:2023-03-08 16:56:20

1062 路由选择

 时间限制: 1 s
 空间限制: 128000 KB
 题目等级 : 钻石 Diamond
题目描述 Description

在网络通信中,经常需要求最短路径。但完全用最短路径传输有这样一个问题:如果最终在两个终端节点之间给出的最短路径只有一条。则在该路径中的任一个节点或链路出现故障时,信号传输将面临中断的危险。因此,对网络路由选择作了以下改进:

为任意两节点之间通信提供三条路径供其选择,即最短路径、第二最短路径和第三最短路径。

第一最短路径定义为:给定一个不含负回路的网络D={V,A,W},其中V={v1,v2,…,vn},A为边的集合,W为权的集合,设P1是D中最短(v1,vn)路。称P1为D中最短(v1,vn)路径,如果D中有一条(v1,vn)路,P2满足以下条件:

(1)P2≠P1;(2)D中不存在异于P1的路P,使得:

(3)W(P1)≤W(P)<W(P2)

则称P2为D的第二最短路径。

第三最短路径的定义为:设P2是D中第二最短(v1,vn)路径,如果D中有一条(v1,vn)路P3满足以下条件:

(1)P3≠P2并且P3≠P1;(2)D中不存在异于P1,P2的路P,使得:

(3)W(P2)≤W(P)<W(P3)

则称P3为D中第三最短路径。

现给定一有N个节点的网络,N≤30,求给定两点间的第一、第二和第三最短路径。

输入描述 Input Description

输入:  n  S  T  Max   (每格数值之间用空格分隔)

M11  M12  …  M1n

M21  M22  …  M2n

…   …

Mn1  Mn2  …  Mnn

其中,n为节点数,S为起点,T为终点,Max为一代表无穷大的整数,Mij描述I到J的距离,若Mij=Max,则表示从I到J无直接通路,Mii=0。

输出描述 Output Description

输出:三条路径(从小到大输出),每条路径占一行,形式为:路径长度 始点…终点  (中间用一个空格分隔)

样例输入 Sample Input

5  1       5     10000

0         1         3         10000     7

10000     0          1         10000     10000

10000     10000     0         1         4

10000     10000     10000     0        1

10000     1         10000     10000     0

样例输出 Sample Output

4  1  2  3  4  5

5  1  3  4  5

6  1  2  3  5

/*次短路求解 dijkstra算法*/
#include<cstdio>
#define N 50
const int inf=;
int n;
int d[N][N],dist[][N],vis[][N],step[][N][N];
void dijkstra(int S){
int i,j,tm,u,v,k,l;
for(i=;i<=n;i++)
for(j=;j<;j++)
dist[j][i]=inf;
for(i=;i<=n;i++)
if(i!=S&&d[S][i]<inf) dist[][i]=d[S][i],step[][i][++step[][i][]]=S;
dist[][S]=;
step[][S][]=;
vis[][S]=;
for(i=;i<n*;i++){
for(j=,tm=inf,u=v=;j<=n;j++)
for(k=;k<;k++)
if(!vis[k][j]&&tm>dist[k][j]){tm=dist[k][j];u=k;v=j;}
vis[u][v]=;
for(j=;j<=n;j++)
if(v!=j){
k=dist[u][v]+d[v][j];
if(!vis[][j]&&k<=dist[][j]){
dist[][j]=dist[][j];
step[][j][]=step[][j][];
for(l=;l<=step[][j][];l++) step[][j][l]=step[][j][l];
dist[][j]=dist[][j];
step[][j][]=step[][j][];
for(l=;l<=step[][j][];l++) step[][j][l]=step[][j][l];
dist[][j]=k;
for(l=;l<=step[u][v][];l++) step[][j][l]=step[u][v][l];
step[][j][++step[][j][]]=v;
}else if(!vis[][j]&&k<dist[][j]){
dist[][j]=dist[][j];
step[][j][]=step[][j][];
for(l=;l<=step[][j][];l++) step[][j][l]=step[][j][l];
dist[][j]=k;
for(l=;l<=step[u][v][];l++) step[][j][l]=step[u][v][l];
step[][j][++step[][j][]]=v;
}else if(!vis[][j]&&k<dist[][j]){
dist[][j]=k;
for(l=;l<=step[u][v][];l++) step[][j][l]=step[u][v][l];
step[][j][++step[][j][]]=v;
}
}
}
}
int main(){
int S,T,ig,i,j;
scanf("%d%d%d%d",&n,&S,&T,&ig);
for(i=;i<=n;i++){
for(j=;j<=n;j++){
scanf("%d",&d[i][j]);
if(d[i][j]==ig) d[i][j]=inf;
}
}
dijkstra(S);
printf("%d ",dist[][T]);
for(i=;i<=step[][T][];i++) printf("%d ",step[][T][i]);printf("%d\n",T);
printf("%d ",dist[][T]);
for(i=;i<=step[][T][];i++) printf("%d ",step[][T][i]);printf("%d\n",T);
printf("%d ",dist[][T]);
for(i=;i<=step[][T][];i++) printf("%d ",step[][T][i]);printf("%d\n",T);
return ;
}