Tensorflow Python 转 Java(一)

时间:2023-03-08 16:57:09
Tensorflow Python 转 Java(一)

一、背景描述

最近python的tensorflow项目要弄到线上去。网络用的Tensorflow现成的包。数据用kaggle中的数据为例子。

数据地址:

https://www.kaggle.com/johnfarrell/gpu-example-from-prepared-data-try-deepfm

二、Python代码

1、Python Code

 # author: adrian.wu
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function import tensorflow as tf tf.logging.set_verbosity(tf.logging.INFO)
# Set to INFO for tracking training, default is WARN print("Using TensorFlow version %s" % (tf.__version__)) CATEGORICAL_COLUMNS = ["workclass", "education",
"marital.status", "occupation",
"relationship", "race",
"sex", "native.country"] # Columns of the input csv file
COLUMNS = ["age", "workclass", "fnlwgt", "education",
"education.num", "marital.status",
"occupation", "relationship", "race",
"sex", "capital.gain", "capital.loss",
"hours.per.week", "native.country", "income"] FEATURE_COLUMNS = ["age", "workclass", "education",
"education.num", "marital.status",
"occupation", "relationship", "race",
"sex", "capital.gain", "capital.loss",
"hours.per.week", "native.country"] import pandas as pd df = pd.read_csv("/Users/adrian.wu/Desktop/learn/kaggle/adult-census-income/adult.csv") from sklearn.model_selection import train_test_split BATCH_SIZE = 40 num_epochs = 1
shuffle = True y = df["income"].apply(lambda x: ">50K" in x).astype(int)
del df["fnlwgt"] # Unused column
del df["income"] # Labels column, already saved to labels variable
X = df print(X.describe()) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20) train_input_fn = tf.estimator.inputs.pandas_input_fn(
x=X_train,
y=y_train,
batch_size=BATCH_SIZE,
num_epochs=num_epochs,
shuffle=shuffle) eval_input_fn = tf.estimator.inputs.pandas_input_fn(
x=X_test,
y=y_test,
batch_size=BATCH_SIZE,
num_epochs=num_epochs,
shuffle=shuffle) def generate_input_fn(filename, num_epochs=None, shuffle=True, batch_size=BATCH_SIZE):
df = pd.read_csv(filename) # , header=None, names=COLUMNS)
labels = df["income"].apply(lambda x: ">50K" in x).astype(int)
del df["fnlwgt"] # Unused column
del df["income"] # Labels column, already saved to labels variable type(df['age'].iloc[3]) return tf.estimator.inputs.pandas_input_fn(
x=df,
y=labels,
batch_size=batch_size,
num_epochs=num_epochs,
shuffle=shuffle) sex = tf.feature_column.categorical_column_with_vocabulary_list(
key="sex",
vocabulary_list=["female", "male"])
race = tf.feature_column.categorical_column_with_vocabulary_list(
key="race",
vocabulary_list=["Amer-Indian-Eskimo",
"Asian-Pac-Islander",
"Black", "Other", "White"]) # 先对categorical的列做hash
education = tf.feature_column.categorical_column_with_hash_bucket(
"education", hash_bucket_size=1000)
marital_status = tf.feature_column.categorical_column_with_hash_bucket(
"marital.status", hash_bucket_size=100)
relationship = tf.feature_column.categorical_column_with_hash_bucket(
"relationship", hash_bucket_size=100)
workclass = tf.feature_column.categorical_column_with_hash_bucket(
"workclass", hash_bucket_size=100)
occupation = tf.feature_column.categorical_column_with_hash_bucket(
"occupation", hash_bucket_size=1000)
native_country = tf.feature_column.categorical_column_with_hash_bucket(
"native.country", hash_bucket_size=1000) print('Categorical columns configured') age = tf.feature_column.numeric_column("age")
deep_columns = [
# Multi-hot indicator columns for columns with fewer possibilities
tf.feature_column.indicator_column(workclass),
tf.feature_column.indicator_column(marital_status),
tf.feature_column.indicator_column(sex),
tf.feature_column.indicator_column(relationship),
tf.feature_column.indicator_column(race),
# Embeddings for categories with more possibilities. Should have at least (possibilties)**(0.25) dims
tf.feature_column.embedding_column(education, dimension=8),
tf.feature_column.embedding_column(native_country, dimension=8),
tf.feature_column.embedding_column(occupation, dimension=8),
age
] m2 = tf.estimator.DNNClassifier(
model_dir="model/dir",
feature_columns=deep_columns,
hidden_units=[100, 50]) m2.train(input_fn=train_input_fn) start, end = 0, 5
data_predict = df.iloc[start:end]
predict_labels = y.iloc[start:end]
print(predict_labels)
print(data_predict.head(12)) # show this before deleting, so we know what the labels
predict_input_fn = tf.estimator.inputs.pandas_input_fn(
x=data_predict,
batch_size=1,
num_epochs=1,
shuffle=False) predictions = m2.predict(input_fn=predict_input_fn) for prediction in predictions:
print("Predictions: {} with probabilities {}\n".format(prediction["classes"], prediction["probabilities"])) def column_to_dtype(column):
if column in CATEGORICAL_COLUMNS:
return tf.string
else:
return tf.float32 # 什么数据要喂给输入
FEATURE_COLUMNS_FOR_SERVE = ["workclass", "education",
"marital.status", "occupation",
"relationship", "race",
"sex", "native.country", "age"] serving_features = {column: tf.placeholder(shape=[1], dtype=column_to_dtype(column), name=column) for column in
FEATURE_COLUMNS_FOR_SERVE}
# serving_input_receiver_fn有很多种方式
export_dir = m2.export_savedmodel(export_dir_base="models/export",
serving_input_receiver_fn=tf.estimator.export.build_raw_serving_input_receiver_fn(
serving_features), as_text=True)
export_dir = export_dir.decode("utf8")

2、通过 export_savedmodel这个函数生成了variables变量和pbtxt文件。如图所示:

Tensorflow Python 转 Java(一)

3、先打开saved_model.pbtxt文件浏览一下,会发现这是对tensorflow 的一个个描述。包含了node name, operation name,dtype等信息。在套用java时需要明确node的name。

node {
name: "dnn/head/predictions/probabilities"
op: "Softmax"
input: "dnn/head/predictions/two_class_logits"
attr {
key: "T"
value {
type: DT_FLOAT
}
}
attr {
key: "_output_shapes"
value {
list {
shape {
dim {
size: -1
}
dim {
size: 2
}
}
}
}

三、Java代码

1、先将variable和pbtxt文件放到resources下面。

Tensorflow Python 转 Java(一)

2、Java代码

 import org.tensorflow.SavedModelBundle;
import org.tensorflow.Session;
import org.tensorflow.Tensor; /**
* Created by adrian.wu on 2019/3/14.
*/
public class TestAdultIncome { public static void main(String[] args) throws Exception { SavedModelBundle model = SavedModelBundle.load("/Users/adrian.wu/Desktop/sc/adrian_test/src/main/resources/adultincomemodel", "serve");
Session sess = model.session(); String sex = "Female";
String workclass = "?";
String education = "HS-grad";
String ms = "Widowed";
String occupation = "?";
String relationship = "Not-in-family";
String race = "White";
String nc = "United-States"; //不能将string直接喂给create()接口
Tensor sexTensor = Tensor.create(new byte[][]{sex.getBytes()});
Tensor workclassTensor = Tensor.create(new byte[][]{workclass.getBytes()});
Tensor eduTensor = Tensor.create(new byte[][]{education.getBytes()});
Tensor msTensor = Tensor.create(new byte[][]{ms.getBytes()});
Tensor occuTensor = Tensor.create(new byte[][]{occupation.getBytes()});
Tensor ralaTensor = Tensor.create(new byte[][]{relationship.getBytes()});
Tensor raceTensor = Tensor.create(new byte[][]{race.getBytes()});
Tensor ncTesnsor = Tensor.create(new byte[][]{nc.getBytes()}); float[][] age = {{90f}}; Tensor ageTensor = Tensor.create(age); //根据pbtxt文件,查看operation name。
Tensor result = sess.runner()
.feed("workclass", workclassTensor)
.feed("education", eduTensor)
.feed("marital.status", msTensor)
.feed("relationship", ralaTensor)
.feed("race", raceTensor)
.feed("sex", sexTensor)
.feed("native.country", ncTesnsor)
.feed("occupation",occuTensor)
.feed("age", ageTensor)
.fetch("dnn/head/predictions/probabilities")
.run()
.get(0); float[][] buffer = new float[1][2];
result.copyTo(buffer);
System.out.println("" + String.valueOf(buffer[0][0]));
} }

四、结果对比

python和java结果:

 java: 0.9432887
python: 0.9432887