题目链接:https://vjudge.net/contest/144221#problem/B
题意:找一条从 s 到 t 的路,使得瓶颈路最小。
点的数目是10^4,如果向之前的方案求 maxcost数组,O(n*n)时间是过不了的,这个时候,用到了增倍祖先。
关于倍增祖先:http://m.w2bc.com/article/177601
我要补充的是,倍增祖先的优点,是在于倍增,他写的案例,没有体现出倍增,这里强调一下。有点像二分的思想;
利用倍增祖先初始化maxcost[i][j]数组,maxcost[i][j] 在倍增祖先里面表示的,结点 i 的第2j级祖先之间的瓶颈。
用O(nlogn)初始化,然后,查询是O(logn)。
#include <bits/stdc++.h>
using namespace std; const int maxn = + ;
const int INF = 0x3f3f3f3f;
const int logmaxn = ; int n,m; struct Edge
{
int u,v,d;
bool operator < (const Edge& rhs) const
{
return d < rhs.d;
}
}; Edge e[maxn]; int pa[maxn]; int Find_Set(int x)
{
if(x!=pa[x])
pa[x] = Find_Set(pa[x]);
return pa[x];
} vector<int> G[maxn],C[maxn]; struct LCA
{
int n;
int fa[maxn];
int cost[maxn];
int L[maxn];
int anc[maxn][logmaxn];
int maxcost[maxn][logmaxn]; void preprocess()
{
for(int i=; i<n; i++)
{
anc[i][] = fa[i];
maxcost[i][] = cost[i];
for(int j=; (<<j)<n; j++)
anc[i][j] = -;
} for(int j=; (<<j)<n; j++)
{
for(int i=; i<n; i++)
{
if(anc[i][j-]!=-)
{
int a = anc[i][j-];
anc[i][j] = anc[a][j-];
maxcost[i][j] = max(maxcost[i][j-],maxcost[a][j-]);
}
}
}
} int query (int p,int q)
{
int log;
if(L[p]<L[q]) swap(p,q);
for(log=; (<<log)<=L[p]; log++);
log--; int ans = -INF;
for(int i=log; i>=; i--)
{
if(L[p]-(<<i)>=L[q])
{
ans = max(ans,maxcost[p][i]);
p = anc[p][i];
}
}
if(p==q) return ans; //lca 是 p for(int i=log; i>=; i--)
{
if(anc[p][i]!=-&&anc[p][i]!=anc[q][i])
{
ans = max(ans,maxcost[p][i]);
p = anc[p][i];
ans = max(ans,maxcost[q][i]);
q = anc[q][i];
}
} ans = max(ans,cost[p]);
ans = max(ans,cost[q]); return ans;
//LCA 是 fa[p] = fa[q];
} }; LCA solver; void dfs(int u,int fa,int level)
{
solver.L[u] = level;
for(int i=; i<G[u].size(); i++)
{
int v = G[u][i];
if(G[u][i]!=fa)
{
solver.fa[v] = u;
solver.cost[v] = C[u][i];
dfs(G[u][i],u,level+);
}
}
} int main()
{
//freopen("in.txt","r",stdin);
int kase = ;
while(scanf("%d%d",&n,&m)==&&n)
{
for(int i=; i<m; i++)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--;
v--;
e[i] = (Edge)
{
u,v,d
};
}
sort(e,e+m); for(int i=; i<n; i++)
{
pa[i] = i;
G[i].clear();
C[i].clear();
} for(int i=; i<m; i++)
{
int u = e[i].u;
int v = e[i].v;
int fx = Find_Set(u);
int fy = Find_Set(v); if(fx!=fy)
{
pa[fx] = fy;
G[u].push_back(v);
C[u].push_back(e[i].d);
G[v].push_back(u);
C[v].push_back(e[i].d);
}
}
solver.n = n;
dfs(,-,);
solver.preprocess();
if(kase++!=)
puts("");
int Q;
scanf("%d",&Q);
while(Q--)
{
int u,v;
scanf("%d%d",&u,&v);
u--;
v--;
printf("%d\n",solver.query(u,v));
} } return ;
}