P3379 【模板】最近公共祖先(LCA)
题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:
第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:
输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
该树结构如下:
第一次询问:2、4的最近公共祖先,故为4。
第二次询问:3、2的最近公共祖先,故为4。
第三次询问:3、5的最近公共祖先,故为1。
第四次询问:1、2的最近公共祖先,故为4。
第五次询问:4、5的最近公共祖先,故为4。
故输出依次为4、4、1、4、4。
这篇讲的不错,link一下:https://www.cnblogs.com/kousak/p/9192094.html
因为使用了vector作为临接表,效率上比前向星慢了些,开了O2优化过的。
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define MAX 500005
using namespace std;
typedef long long ll; int t;
int f[MAX],dep[MAX];
int in[MAX],out[MAX];
vector<int> v[MAX]; inline void dfs(int pre,int x,int s){
in[x]=++t;
dep[x]=s;
for(int i=;i<v[x].size();i++){
int to=v[x][i];
if(to==pre) continue;
f[to]=x;
dfs(x,to,s+);
}
out[x]=++t;
}
inline int lca(int x,int y){
if(dep[x]>dep[y]){
int temp=x;
x=y;
y=temp;
}
if(in[x]<=in[y]&&out[y]<=out[x]){
return x;
}
while(!(in[x]<=in[y]&&out[y]<=out[x])){
x=f[x];
}
return x;
}
int main()
{
int n,m,s,i,j;
int x,y;
scanf("%d%d%d",&n,&m,&s);
for(i=;i<n;i++){
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
t=;f[s]=s;
dfs(-,s,);
while(m--){
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y));
}
return ;
}
纯dfs序(有时会T)
// luogu-judger-enable-o2
#include<bits/stdc++.h>
#define MAX 500005
using namespace std;
typedef long long ll; int t;
int f[MAX][],dep[MAX];
int in[MAX],out[MAX];
vector<int> v[MAX]; void dfs(int pre,int x,int s){
in[x]=++t;
dep[x]=s;
for(int i=;i<v[x].size();i++){
int to=v[x][i];
if(to==pre) continue;
f[to][]=x;
dfs(x,to,s+);
}
out[x]=++t;
}
int lca(int x,int y){
if(dep[x]>dep[y]){
int temp=x;
x=y;
y=temp;
}
if(in[x]<=in[y]&&out[y]<=out[x]){
return x;
}
for(int i=;i>=;i--){
int fx=f[x][i];
if(!(in[fx]<=in[y]&&out[y]<=out[fx])){
x=fx;
}
}
return f[x][];
}
int main()
{
int n,m,s,i,j;
int x,y;
scanf("%d%d%d",&n,&m,&s);
for(i=;i<n;i++){
scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
t=;f[s][]=s;
dfs(-,s,);
for(i=;i<=;i++){
for(j=;j<=n;j++){
f[j][i]=f[f[j][i-]][i-];
}
}
while(m--){
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y));
}
return ;
}
dfs序+倍增