05-树9 Huffman Codes (30分)
In 1953, David A. Huffman published his paper "A Method for the Construction of Minimum-Redundancy Codes", and hence printed his name in the history of computer science. As a professor who gives the final exam problem on Huffman codes, I am encountering a big problem: the Huffman codes are NOT unique. For example, given a string "aaaxuaxz", we can observe that the frequencies of the characters 'a', 'x', 'u' and 'z' are 4, 2, 1 and 1, respectively. We may either encode the symbols as {'a'=0, 'x'=10, 'u'=110, 'z'=111}, or in another way as {'a'=1, 'x'=01, 'u'=001, 'z'=000}, both compress the string into 14 bits. Another set of code can be given as {'a'=0, 'x'=11, 'u'=100, 'z'=101}, but {'a'=0, 'x'=01, 'u'=011, 'z'=001} is NOT correct since "aaaxuaxz" and "aazuaxax" can both be decoded from the code 00001011001001. The students are submitting all kinds of codes, and I need a computer program to help me determine which ones are correct and which ones are not.
Input Specification:
Each input file contains one test case. For each case, the first line gives an integer N (2≤N≤63), then followed by a line that contains all the Ndistinct characters and their frequencies in the following format:
c[1] f[1] c[2] f[2] ... c[N] f[N]
where c[i]
is a character chosen from {'0' - '9', 'a' - 'z', 'A' - 'Z', '_'}, andf[i]
is the frequency of c[i]
and is an integer no more than 1000. The next line gives a positive integer M (≤1000), then followed by Mstudent submissions. Each student submission consists of N lines, each in the format:
c[i] code[i]
where c[i]
is the i
-th character and code[i]
is an non-empty string of no more than 63 '0's and '1's.
Output Specification:
For each test case, print in each line either "Yes" if the student's submission is correct, or "No" if not.
Note: The optimal solution is not necessarily generated by Huffman algorithm. Any prefix code with code length being optimal is considered correct.
Sample Input:
7
A 1 B 1 C 1 D 3 E 3 F 6 G 6
4
A 00000
B 00001
C 0001
D 001
E 01
F 10
G 11
A 01010
B 01011
C 0100
D 011
E 10
F 11
G 00
A 000
B 001
C 010
D 011
E 100
F 101
G 110
A 00000
B 00001
C 0001
D 001
E 00
F 10
G 11
Sample Output:
Yes Yes No
No
#include<iostream> #include<vector> #include<queue> #include<map> #include<string> using namespace std; int TreeHeight; int cnt=0; int total=0; map<char,int>m; typedef struct TreeNode * Tree; struct TreeNode{ int data; char C; int height; Tree Left,Right; }; struct cmp{ bool operator()(Tree T1,Tree T2){ return T1->data>T2->data; } }; void Init(priority_queue<Tree,vector<Tree>,cmp>&p,int size){ for(int i=0;i<size;i++){ Tree T=new TreeNode; T->height=1; T->Left=T->Right=NULL; cin>>T->C>>T->data; m[T->C]=T->data; p.push(T); } while(p.size()>1){ Tree T1=p.top(); p.pop(); Tree T2=p.top(); p.pop(); Tree T3=new TreeNode; T3->data=T1->data+T2->data; T3->C=' ';//新树的字符域为空格 T3->Left=T1; T3->Right=T2; p.push(T3); } return ; } void PreOrder(Tree T){ if(!T) return; else{ if(T->Left==NULL&&T->Right==NULL){ cnt=cnt+T->height*T->data; total++; }else{ T->Left->height=T->height+1; T->Right->height=T->height+1; PreOrder(T->Left); PreOrder(T->Right); } return; } } void Compare(int size){ int cmpcnt=0; char A; string B; vector<string>v; bool flag=false; for(int i=0;i<size;i++){ cin>>A>>B; int lenv=v.size(); for(int i=0;i<lenv;i++){ if(v[i].find(B)==0) {flag=true;break;} } v.push_back(B); cmpcnt=cmpcnt+m[A]*B.length(); } if(cmpcnt==cnt){ if(flag==false) cout<<"Yes"<<endl; else cout<<"No"<<endl; return ; }else{ cout<<"No"<<endl; return ; } } int main(){ priority_queue<Tree,vector<Tree>,cmp>p; int size; cin>>size; Init(p,size); Tree HuffmanTree=p.top(); p.pop(); HuffmanTree->height=0; PreOrder(HuffmanTree); int t; cin>>t; while(t--){ Compare(size); } return 0; }