Huffman树
发布时间: 2017年1月21日 20:45 时间限制: 1000ms 内存限制: 128M
Huffman树在编码中有着广泛的应用。
在这里,我们只关心Huffman树的构造过程。
给出一列数{pi}={p0, p1, …, pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。
在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。
本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。
例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。
输入的第一行包含一个正整数n(n<=100)。 接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。
输出用这些数构造Huffman树的总费用。
5 5 3 8 2 9
59
用C++的vector类和sort就可以轻松解决。
代码:
#include <cstdio> #include <iostream> #include <vector> #include <algorithm> int cmp(int a, int b) { return a > b; } using namespace std; int main() { int n; while (~scanf("%d", &n)) { vector<int> huf; while (n--) { int t; scanf("%d", &t); huf.push_back(t); } vector<int>::size_type size = huf.size(); int cost = 0; while (size >= 2) { sort(huf.begin(), huf.end(), cmp); int t = huf[size - 1] + huf[size - 2]; cost += t; huf.pop_back(); huf.pop_back(); huf.push_back(t); size = huf.size(); } printf("%d\n", cost); } return 0; }