Java 集合框架源码分析(三)——HashMap

时间:2021-03-26 17:18:52

介绍

HashMap 是Java 集合框架中重要的组成部分,也是平常使用频率很高的一个集合类,典型使用方式如下:

Map<Integer,String> map=new HashMap<>();
map.put(1,"Java EE");
map.put(2,"Android");
...

它的类继承层级结构如下。

类层次

  java.lang.Object
继承者 java.util.AbstractMap< K,V >
继承者 java.util.HashMap< K,V >

HashMap是基于哈希表实现的,每一个元素都是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阈值)时,同样会自动增长。
HashMap是非线程安全的,只是用于单线程环境下,多线程环境下可以采用concurrent并发包下的concurrentHashMap
HashMap实现了Serializable接口,因此它支持序列化,实现了Cloneable接口,能被克隆。

HashMap源码剖析

以下代码基于SUN JDK 1.7(注意,不同的JDK的实现细节可能不太一样,我们只关注原理,不去太追求细节)加入了比较详细的注释。

package java.util;
import java.io.*;

public class HashMap<K,V>
extends AbstractMap<K,V>
implements Map<K,V>, Cloneable, Serializable
{

// 默认的初始容量(容量为HashMap中槽的数目)是16,且实际容量必须是2的整数次幂。
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

// 最大容量(必须是2的幂且小于2的30次方,传入容量过大将被这个值替换)
static final int MAXIMUM_CAPACITY = 1 << 30;

// 默认加载因子为0.75
static final float DEFAULT_LOAD_FACTOR = 0.75f;


//当table未被填充时空的table实例
static final Entry<?,?>[] EMPTY_TABLE = {};


//resize操作需要用这个table,且长度必须是2的n次方。
transient Entry<K,V>[] table = (Entry<K,V>[]) EMPTY_TABLE;

/ HashMap的底层数组中已用槽的数量
transient int size;

// HashMap的阈值,用于判断是否需要调整HashMap的容量(threshold = 容量*加载因子)
int threshold;

// 加载因子实际大小
final float loadFactor;

// HashMap被改变的次数
transient int modCount;


//备用的Hash临界值,降低因弱Hash计算导致的hash冲突,可以通过系统变量重写这个值
static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;


//虚拟机启动后,holder中的values才能被初始化,保证值的重写生效
private static class Holder {

/**
* Table capacity above which to switch to use alternative hashing.
*/

static final int ALTERNATIVE_HASHING_THRESHOLD;

static {
String altThreshold = java.security.AccessController.doPrivileged(
new sun.security.action.GetPropertyAction(
"jdk.map.althashing.threshold"));

int threshold;
try {
threshold = (null != altThreshold)
? Integer.parseInt(altThreshold)
: ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;

// disable alternative hashing if -1
if (threshold == -1) {
threshold = Integer.MAX_VALUE;
}

if (threshold < 0) {
throw new IllegalArgumentException("value must be positive integer.");
}
} catch(IllegalArgumentException failed) {
throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
}

ALTERNATIVE_HASHING_THRESHOLD = threshold;
}
}


//随机值hashSeed减少hash碰撞,如果为0,备选hash被禁用
transient int hashSeed = 0;

// 指定“容量大小”和“加载因子”的构造函数
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);

this.loadFactor = loadFactor;
threshold = initialCapacity;
init();
}

// 指定“容量大小”的构造函数
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

// 默认构造函数。
public HashMap() {
this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR);
}

//包含“子Map”的构造函数
public HashMap(Map<? extends K, ? extends V> m) {
this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR);
inflateTable(threshold);

putAllForCreate(m);
}

private static int roundUpToPowerOf2(int number) {
// assert number >= 0 : "number must be non-negative";
return number >= MAXIMUM_CAPACITY
? MAXIMUM_CAPACITY
: (number > 1) ? Integer.highestOneBit((number - 1) << 1) : 1;
}

/**
* Inflates the table.
*/

private void inflateTable(int toSize) {
// Find a power of 2 >= toSize
int capacity = roundUpToPowerOf2(toSize);

threshold = (int) Math.min(capacity * loadFactor, MAXIMUM_CAPACITY + 1);
table = new Entry[capacity];
initHashSeedAsNeeded(capacity);
}

// internal utilities

/**
* Initialization hook for subclasses. This method is called
* in all constructors and pseudo-constructors (clone, readObject)
* after HashMap has been initialized but before any entries have
* been inserted. (In the absence of this method, readObject would
* require explicit knowledge of subclasses.)
*/

void init() {
}

/**
* Initialize the hashing mask value. We defer initialization until we
* really need it.
*/

final boolean initHashSeedAsNeeded(int capacity) {
boolean currentAltHashing = hashSeed != 0;
boolean useAltHashing = sun.misc.VM.isBooted() &&
(capacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
boolean switching = currentAltHashing ^ useAltHashing;
if (switching) {
hashSeed = useAltHashing
? sun.misc.Hashing.randomHashSeed(this)
: 0;
}
return switching;
}

//求hash值的方法,重新计算hash值
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}

h ^= k.hashCode();

// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

// 返回h在数组中的索引值,这里用&代替取模,旨在提升效率
// h & (length-1)保证返回值的小于length
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}


public int size() {
return size;
}

//返回HashMap是否为空
public boolean isEmpty() {
return size == 0;
}

// 获取key对应的value
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);

return null == entry ? null : entry.getValue();
}

//// 获取“key为null”的元素的值
// HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!
private V getForNullKey() {
if (size == 0) {
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}

// HashMap是否包含key
public boolean containsKey(Object key) {
return getEntry(key) != null;
}

// 返回“键为key”的键值对
final Entry<K,V> getEntry(Object key) {
if (size == 0) {
return null;
}

int hash = (key == null) ? 0 : hash(key);
for (Entry<K,V> e = table[indexFor(hash, table.length)];
e != null;
e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
}
return null;
}

// 将“key-value”添加到HashMap中
public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
if (key == null)
return putForNullKey(value);
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}

modCount++;
addEntry(hash, key, value, i);
return null;
}

// putForNullKey()的作用是将“key为null”键值对添加到table[0]位置
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
addEntry(0, null, value, 0);
return null;
}

// 创建HashMap对应的“添加方法”,
// 它和put()不同。putForCreate()是内部方法,它被构造函数等调用,用来创建HashMap
// 而put()是对外提供的往HashMap中添加元素的方法。
private void putForCreate(K key, V value) {
int hash = null == key ? 0 : hash(key);
int i = indexFor(hash, table.length);

/**
* Look for preexisting entry for key. This will never happen for
* clone or deserialize. It will only happen for construction if the
* input Map is a sorted map whose ordering is inconsistent w/ equals.
*/

for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
e.value = value;
return;
}
}

createEntry(hash, key, value, i);
}

private void putAllForCreate(Map<? extends K, ? extends V> m) {
for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
putForCreate(e.getKey(), e.getValue());
}

// 重新调整HashMap的大小,newCapacity是调整后的容量
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}

Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

// 将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}

// 将"m"的全部元素都添加到HashMap中
public void putAll(Map<? extends K, ? extends V> m) {
int numKeysToBeAdded = m.size();
if (numKeysToBeAdded == 0)
return;

if (table == EMPTY_TABLE) {
inflateTable((int) Math.max(numKeysToBeAdded * loadFactor, threshold));
}

// 计算容量是否足够,
// 若“当前阀值容量 < 需要的容量”,则将容量x2。
if (numKeysToBeAdded > threshold) {
int targetCapacity = (int)(numKeysToBeAdded / loadFactor + 1);
if (targetCapacity > MAXIMUM_CAPACITY)
targetCapacity = MAXIMUM_CAPACITY;
int newCapacity = table.length;
while (newCapacity < targetCapacity)
newCapacity <<= 1;
if (newCapacity > table.length)
resize(newCapacity);
}

for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
put(e.getKey(), e.getValue());
}

// 删除“键为key”元素
public V remove(Object key) {
Entry<K,V> e = removeEntryForKey(key);
return (e == null ? null : e.value);
}

// 删除“键为key”的元素
final Entry<K,V> removeEntryForKey(Object key) {
if (size == 0) {
return null;
}
int hash = (key == null) ? 0 : hash(key);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;

while (e != null) {
Entry<K,V> next = e.next;
Object k;
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}

return e;
}

// 删除“键值对”
final Entry<K,V> removeMapping(Object o) {
if (size == 0 || !(o instanceof Map.Entry))
return null;

Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
Object key = entry.getKey();
int hash = (key == null) ? 0 : hash(key);
int i = indexFor(hash, table.length);
Entry<K,V> prev = table[i];
Entry<K,V> e = prev;

while (e != null) {
Entry<K,V> next = e.next;
if (e.hash == hash && e.equals(entry)) {
modCount++;
size--;
if (prev == e)
table[i] = next;
else
prev.next = next;
e.recordRemoval(this);
return e;
}
prev = e;
e = next;
}

return e;
}

// 清空HashMap,将所有的元素设为null
public void clear() {
modCount++;
Arrays.fill(table, null);
size = 0;
}

// 是否包含“值为value”的元素
public boolean containsValue(Object value) {
if (value == null)
return containsNullValue();

Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (value.equals(e.value))
return true;
return false;
}

// 是否包含null值
private boolean containsNullValue() {
Entry[] tab = table;
for (int i = 0; i < tab.length ; i++)
for (Entry e = tab[i] ; e != null ; e = e.next)
if (e.value == null)
return true;
return false;
}

// 克隆一个HashMap,并返回Object对象
public Object clone() {
HashMap<K,V> result = null;
try {
result = (HashMap<K,V>)super.clone();
} catch (CloneNotSupportedException e) {
// assert false;
}
if (result.table != EMPTY_TABLE) {
result.inflateTable(Math.min(
(int) Math.min(
size * Math.min(1 / loadFactor, 4.0f),
// we have limits...
HashMap.MAXIMUM_CAPACITY),
table.length));
}
result.entrySet = null;
result.modCount = 0;
result.size = 0;
result.init();
result.putAllForCreate(this);

return result;
}
// Entry是单向链表。
// 它是 “HashMap链式存储法”对应的链表。
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;

/**
* Creates new entry.
*/

Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}

public final K getKey() {
return key;
}

public final V getValue() {
return value;
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}

public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}

public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}

public final String toString() {
return getKey() + "=" + getValue();
}

// 当向HashMap中添加元素时,会调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap<K,V> m) {
}

// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap<K,V> m) {
}
}

// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}

createEntry(hash, key, value, bucketIndex);
}

// 创建Entry。将“key-value”插入指定位置。
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}

// HashIterator是HashMap迭代器的抽象出来的父类,实现了公共了函数。
// 它包含“key迭代器(KeyIterator)”、“Value迭代器(ValueIterator)”和“Entry迭代器(EntryIterator)”3个子类。
private abstract class HashIterator<E> implements Iterator<E> {
Entry<K,V> next; // 下一个元素
int expectedModCount; //expectedModCount用于实现fast-fail机制。
int index; // 当前索引
Entry<K,V> current; // 当前元素

HashIterator() {
expectedModCount = modCount;
if (size > 0) { // advance to first entry
Entry[] t = table;
// 将next指向table中第一个不为null的元素。
// 这里利用了index的初始值为0,从0开始依次向后遍历,直到找到不为null的元素就退出循环
while (index < t.length && (next = t[index++]) == null)
;
}
}

public final boolean hasNext() {
return next != null;
}
// 获取下一个元素
final Entry<K,V> nextEntry() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
// 注意!!!
// 一个Entry就是一个单向链表
// 若该Entry的下一个节点不为空,就将next指向下一个节点;
// 否则,将next指向下一个链表(也是下一个Entry)的不为null的节点。
if ((next = e.next) == null) {
Entry[] t = table;
while (index < t.length && (next = t[index++]) == null)
;
}
current = e;
return e;
}
//删除当前元素
public void remove() {
if (current == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
Object k = current.key;
current = null;
HashMap.this.removeEntryForKey(k);
expectedModCount = modCount;
}
}
// value的迭代器
private final class ValueIterator extends HashIterator<V> {
public V next() {
return nextEntry().value;
}
}
// key的迭代器
private final class KeyIterator extends HashIterator<K> {
public K next() {
return nextEntry().getKey();
}
}
// Entry的迭代器
private final class EntryIterator extends HashIterator<Map.Entry<K,V>> {
public Map.Entry<K,V> next() {
return nextEntry();
}
}

// 返回一个“key迭代器”
Iterator<K> newKeyIterator() {
return new KeyIterator();
}
//返回一个“value迭代器”
Iterator<V> newValueIterator() {
return new ValueIterator();
}
// 返回一个“entry迭代器”
Iterator<Map.Entry<K,V>> newEntryIterator() {
return new EntryIterator();
}


// Views

private transient Set<Map.Entry<K,V>> entrySet = null;

// 返回“key的集合”,实际上返回一个“KeySet对象”
public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null ? ks : (keySet = new KeySet()));
}
// Key对应的集合
// KeySet继承于AbstractSet,说明该集合中没有重复的Key。
private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
return HashMap.this.removeEntryForKey(o) != null;
}
public void clear() {
HashMap.this.clear();
}
}

// 返回“value集合”,实际上返回的是一个Values对象
public Collection<V> values() {
Collection<V> vs = values;
return (vs != null ? vs : (values = new Values()));
}

private final class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return newValueIterator();
}
public int size() {
return size;
}
public boolean contains(Object o) {
return containsValue(o);
}
public void clear() {
HashMap.this.clear();
}
}

// 返回“HashMap的Entry集合”
public Set<Map.Entry<K,V>> entrySet() {
return entrySet0();
}
// 返回“HashMap的Entry集合”,它实际是返回一个EntrySet对象
private Set<Map.Entry<K,V>> entrySet0() {
Set<Map.Entry<K,V>> es = entrySet;
return es != null ? es : (entrySet = new EntrySet());
}

private final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return newEntryIterator();
}
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<K,V> e = (Map.Entry<K,V>) o;
Entry<K,V> candidate = getEntry(e.getKey());
return candidate != null && candidate.equals(e);
}
public boolean remove(Object o) {
return removeMapping(o) != null;
}
public int size() {
return size;
}
public void clear() {
HashMap.this.clear();
}
}

// java.io.Serializable的写入函数
// 将HashMap的“总的容量,实际容量,所有的Entry”都写入到输出流
private void writeObject(java.io.ObjectOutputStream s)
throws IOException
{
// Write out the threshold, loadfactor, and any hidden stuff
s.defaultWriteObject();

// Write out number of buckets
if (table==EMPTY_TABLE) {
s.writeInt(roundUpToPowerOf2(threshold));
} else {
s.writeInt(table.length);
}

// Write out size (number of Mappings)
s.writeInt(size);

// Write out keys and values (alternating)
if (size > 0) {
for(Map.Entry<K,V> e : entrySet0()) {
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
}
}

private static final long serialVersionUID = 362498820763181265L;

// java.io.Serializable的读取函数:根据写入方式读出
// 将HashMap的“总的容量,实际容量,所有的Entry”依次读出
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException
{
// Read in the threshold (ignored), loadfactor, and any hidden stuff
s.defaultReadObject();
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
}

// set other fields that need values
table = (Entry<K,V>[]) EMPTY_TABLE;

// Read in number of buckets
s.readInt(); // ignored.

// Read number of mappings
int mappings = s.readInt();
if (mappings < 0)
throw new InvalidObjectException("Illegal mappings count: " +
mappings);

// capacity chosen by number of mappings and desired load (if >= 0.25)
int capacity = (int) Math.min(
mappings * Math.min(1 / loadFactor, 4.0f),
// we have limits...
HashMap.MAXIMUM_CAPACITY);

// allocate the bucket array;
if (mappings > 0) {
inflateTable(capacity);
} else {
threshold = capacity;
}

init(); // Give subclass a chance to do its thing.

// Read the keys and values, and put the mappings in the HashMap
for (int i = 0; i < mappings; i++) {
K key = (K) s.readObject();
V value = (V) s.readObject();
putForCreate(key, value);
}
}

// 返回“HashMap总的容量”
int capacity() { return table.length; }
// 返回“HashMap的加载因子”
float loadFactor() { return loadFactor; }
}

HashMap重点解析

1. HashMap存储结构

HashMap存储结构如下图所示
Java 集合框架源码分析(三)——HashMap

2. 链表中节点的数据结构

链表中节点的数据结构定义如下:

// Entry是单向链表。 
// 它是 “HashMap链式存储法”对应的链表。
// 它实现了Map.Entry 接口,即实现getKey(), getValue(), setValue(V value), equals(Object o), hashCode()这些函数
static class Entry<K,V> implements Map.Entry<K,V> {
final K key;
V value;
Entry<K,V> next;
int hash;

// 构造函数。
// 输入参数包括"哈希值(h)", "键(k)", "值(v)", "下一节点(n)"
Entry(int h, K k, V v, Entry<K,V> n) {
value = v;
next = n;
key = k;
hash = h;
}

public final K getKey() {
return key;
}

public final V getValue() {
return value;
}

public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
// 判断两个Entry是否相等
// 若两个Entry的“key”和“value”都相等,则返回true。
// 否则,返回false
public final boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry e = (Map.Entry)o;
Object k1 = getKey();
Object k2 = e.getKey();
if (k1 == k2 || (k1 != null && k1.equals(k2))) {
Object v1 = getValue();
Object v2 = e.getValue();
if (v1 == v2 || (v1 != null && v1.equals(v2)))
return true;
}
return false;
}
// 实现hashCode()
public final int hashCode() {
return Objects.hashCode(getKey()) ^ Objects.hashCode(getValue());
}

public final String toString() {
return getKey() + "=" + getValue();
}

// 当向HashMap中添加元素时,会调用recordAccess()。
// 这里不做任何处理
void recordAccess(HashMap<K,V> m) {
}

// 当从HashMap中删除元素时,绘调用recordRemoval()。
// 这里不做任何处理
void recordRemoval(HashMap<K,V> m) {
}
}

// 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}

createEntry(hash, key, value, bucketIndex);
}

// 创建Entry。将“key-value”插入指定位置。
void createEntry(int hash, K key, V value, int bucketIndex) {
Entry<K,V> e = table[bucketIndex];
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}

它的结构元素除了key、value、hash外,还有next,next指向下一个节点。另外,这里覆写了equals和hashCode方法来保证键值对的独一无二。

3. 初始容量和加载因子

HashMap共有四个构造方法。构造方法中提到了两个很重要的参数:初始容量加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中槽的数量(即哈希数组的长度),初始容量是创建哈希表时的容量(从构造函数中可以看出,如果不指明,则默认为16),加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,当哈希表中的条目数超出了加载因子与当前容量的乘积时,则要对该哈希表进行 resize 操作(即扩容)。

下面说下加载因子,如果加载因子越大,对空间的利用更充分,但是查找效率会降低(链表长度会越来越长);如果加载因子太小,那么表中的数据将过于稀疏(很多空间还没用,就开始扩容了),对空间造成严重浪费。如果我们在构造方法中不指定,则系统默认加载因子为0.75,这是一个比较理想的值,一般情况下我们是无需修改的。

另外,无论我们指定的容量为多少,构造方法都会将实际容量设为不小于指定容量的2的次方的一个数,且最大值不能超过2的30次方。

4. HashMap中key和value都允许为null

5. put/get方法实现方式

get操作

 // 获取key对应的value 
public V get(Object key) {
if (key == null)
return getForNullKey();
Entry<K,V> entry = getEntry(key);

return null == entry ? null : entry.getValue();
}
//// 获取“key为null”的元素的值
// HashMap将“key为null”的元素存储在table[0]位置,但不一定是该链表的第一个位置!
private V getForNullKey() {
if (size == 0) {
return null;
}
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null)
return e.value;
}
return null;
}

首先,如果key为null,则直接从哈希表的第一个位置table[0]对应的链表上查找。记住,key为null的键值对永远都放在以table[0]为头结点的链表中,当然不一定是存放在头结点table[0]中。

如果key不为null,则先求的key的hash值,根据hash值找到在table中的索引,在该索引对应的单链表中查找是否有键值对的key与目标key相等,有就返回对应的value,没有则返回null。

put操作

  // 将“key-value”添加到HashMap中 
public V put(K key, V value) {
if (table == EMPTY_TABLE) {
inflateTable(threshold);
}
// 若“key为null”,则将该键值对添加到table[0]中。
if (key == null)
return putForNullKey(value);
// 若“key不为null”,则计算该key的哈希值,然后将其添加到该哈希值对应的链表中。
int hash = hash(key);
int i = indexFor(hash, table.length);
for (Entry<K,V> e = table[i]; e != null; e = e.next) {
Object k;
// 若“该key”对应的键值对已经存在,则用新的value取代旧的value。然后退出!
if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
// 若“该key”对应的键值对不存在,则将“key-value”添加到table中
modCount++;
//将key-value添加到table[i]处
addEntry(hash, key, value, i);
return null;
}

如果key为null,则将其添加到table[0]对应的链表中,putForNullKey的源码如下:

// putForNullKey()的作用是将“key为null”键值对添加到table[0]位置 
private V putForNullKey(V value) {
for (Entry<K,V> e = table[0]; e != null; e = e.next) {
if (e.key == null) {
V oldValue = e.value;
e.value = value;
e.recordAccess(this);
return oldValue;
}
}
modCount++;
// 如果没有存在key为null的键值对,则直接插入到table[0]处
addEntry(0, null, value, 0);
return null;
}

如果key不为null,则同样先求出key的hash值,根据hash值得出在table中的索引,而后遍历对应的单链表,如果单链表中存在与目标key相等的键值对,则将新的value覆盖旧的value,比将旧的value返回,如果找不到与目标key相等的键值对,或者该单链表为空,则将该键值对插入到改单链表的头结点位置(每次新插入的节点都是放在头结点的位置),该操作是有addEntry方法实现的,它的源码如下:

  // 新增Entry。将“key-value”插入指定位置,bucketIndex是位置索引。
void addEntry(int hash, K key, V value, int bucketIndex) {
// 若HashMap的实际大小 不小于 “阈值”,则调整HashMap的大小
if ((size >= threshold) && (null != table[bucketIndex])) {
resize(2 * table.length);
hash = (null != key) ? hash(key) : 0;
bucketIndex = indexFor(hash, table.length);
}

createEntry(hash, key, value, bucketIndex);
}

// 创建Entry。将“key-value”插入指定位置。
void createEntry(int hash, K key, V value, int bucketIndex) {
// 保存“bucketIndex”位置的值到“e”中
Entry<K,V> e = table[bucketIndex];
// 设置“bucketIndex”位置的元素为“新Entry”,
// 设置“e”为“新Entry的下一个节点”
table[bucketIndex] = new Entry<>(hash, key, value, e);
size++;
}

需要说明的是,每次加入键值对时,都要判断当前已用的槽的数目是否大于等于阀值(容量*加载因子),如果大于等于,则进行扩容,将容量扩为原来容量的2倍。
注意createEntry倒数第三行的构造方法,将key-value键值对赋给table[bucketIndex],并将其next指向元素e,这便将key-value放到了头结点中,并将之前的头结点接在了它的后面。该方法也说明,每次put键值对的时候,总是将新的该键值对放在table[bucketIndex]处(即头结点处)。

6. 扩容方法

上面我们看到了扩容的方法,resize方法,它的源码如下:

// 重新调整HashMap的大小,newCapacity是调整后的容量
void resize(int newCapacity) {
Entry[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return;
}
// 新建一个HashMap,将“旧HashMap”的全部元素添加到“新HashMap”中,
// 然后,将“新HashMap”赋值给“旧HashMap”。
Entry[] newTable = new Entry[newCapacity];
transfer(newTable, initHashSeedAsNeeded(newCapacity));
table = newTable;
threshold = (int)Math.min(newCapacity * loadFactor, MAXIMUM_CAPACITY + 1);
}

很明显,是新建了一个HashMap的底层数组,而后调用transfer方法,将就HashMap的全部元素添加到新的HashMap中(要重新计算元素在新的数组中的索引位置)。transfer方法的源码如下:

   // 将HashMap中的全部元素都添加到newTable中
void transfer(Entry[] newTable, boolean rehash) {
int newCapacity = newTable.length;
for (Entry<K,V> e : table) {
while(null != e) {
Entry<K,V> next = e.next;
if (rehash) {
e.hash = null == e.key ? 0 : hash(e.key);
}
int i = indexFor(e.hash, newCapacity);
e.next = newTable[i];
newTable[i] = e;
e = next;
}
}
}

很明显,扩容是一个相当耗时的操作,因为它需要重新计算这些元素在新的数组中的位置并进行复制处理。因此,我们在用HashMap的时,最好能提前预估下HashMap中元素的个数,这样有助于提高HashMap的性能。

7. containsKey方法和containsValue方法

注意containsKey通过key的哈希值将搜索范围定位到指定索引对应的链表,而containsValue需要对哈希数组的每个链表进行搜索。

8. 求hash值和索引值的方法

分析下求hash值和索引值的方法,这两个方法便是HashMap设计的最为核心的部分,二者结合能保证哈希表中的元素尽可能均匀地散列。

 //求hash值的方法,重新计算hash值
final int hash(Object k) {
int h = hashSeed;
if (0 != h && k instanceof String) {
return sun.misc.Hashing.stringHash32((String) k);
}

h ^= k.hashCode();
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}

它只是一个数学公式,JDK这样设计对hash值的计算,自然有它的好处,至于为什么这样设计,我们这里不去追究,只要明白一点,用的位的操作使hash值的计算效率很高。

由hash值找到对应索引的方法如下:

// 返回h在数组中的索引值,这里用&代替取模,旨在提升效率   
// h & (length-1)保证返回值的小于length
static int indexFor(int h, int length) {
// assert Integer.bitCount(length) == 1 : "length must be a non-zero power of 2";
return h & (length-1);
}

这个我们要重点说下,我们一般对哈希表的散列很自然地会想到用hash值对length取模(即除法散列法),Hashtable中也是这样实现的,这种方法基本能保证元素在哈希表中散列的比较均匀,但取模会用到除法运算,效率很低,HashMap中则通过h&(length-1)的方法来代替取模,同样实现了均匀的散列,但效率要高很多,这也是HashMap对Hashtable的一个改进。

接下来,我们分析下为什么哈希表的容量一定要是2的整数次幂。首先,length为2的整数次幂的话,
,所以本来应该写成:index = n % length的,变为可以写成:index = n & (length - 1)两者在length为2的幂方时等价。

h&(length-1)就相当于对length取模,这样便保证了散列的均匀,同时也提升了效率;其次,length为2的整数次幂的话,为偶数,这样length-1为奇数,奇数的最后一位是1,这样便保证了h&(length-1)的最后一位可能为0,也可能为1(这取决于h的值),即与后的结果可能为偶数,也可能为奇数,这样便可以保证散列的均匀性,而如果length为奇数的话,很明显length-1为偶数,它的最后一位是0,这样h&(length-1)的最后一位肯定为0,即只能为偶数,这样任何hash值都只会被散列到数组的偶数下标位置上,这便浪费了近一半的空间,因此,length取2的整数次幂,是为了使不同hash值发生碰撞的概率较小,这样就能使元素在哈希表中均匀地散列。