题意: 给你三角形三个点, 定理是 三个内角的三等分线相交得出 DEF三点,
三角新 DFE是等边三角形
然后要你输出 D E F 的坐标
思路 :
求出三个内角,对于D 相当于 BC向量逆时针旋转, CB向量顺时针旋转 ,相交得到的点;
同理可以求出其他点 (LRJ 模板真强大)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const double eps = 1e-;
struct Point {
double x, y;
Point(double x = , double y = ) : x(x), y(y) {}
};
typedef Point Vector; int dcmp(double x) { if(fabs(x) < eps) return ; else return x < ? - : ; } Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y) ; }
Vector operator - (Point A, Point B) { return Vector(A.x-B.x, A.y-B.y) ; }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p ) ; }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p ) ; }
bool operator == (const Point &a, const Point &b) {
return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ;
} double Dot (Vector A, Vector B) { return A.x*B.x + A.y*B.y; } ///点积
double Length (Vector A) { return sqrt(Dot(A,A)); } ///向量长度
double Angle (Vector A, Vector B) { return acos(Dot(A,B) / Length(A) / Length(B)); } ///角度
double Cross (Vector A, Vector B) { return A.x*B.y - A.y*B.x; } ///X积
double Area2 (Point A, Point B, Point C) { return Cross(B-A,C-A); } ///面积
Vector Rotate (Vector A, double rad) { ///向量旋转 , 逆时针,顺时针角度为-
return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad) + A.y*cos(rad)) ;
}
Vector Normal (Vector A) { double L = Length(A); return Vector(-A.y/L, A.x/L); } ///单位向量
Point GetLineIntersection (Point P, Vector v, Point Q, Vector w) {
Vector u = P - Q;
double t = Cross(w,u) / Cross(v,w);
return P + v*t;
} Point GetPoint (Point A, Point B, Point C)
{
Vector v = C-B;
double rad = Angle(A-B,v);
v = Rotate(v, rad/); Vector vv = B-C;
rad = Angle(A-C,vv);
vv = Rotate(vv, -rad/); return GetLineIntersection(B,v, C,vv);
} int main()
{
int t;
scanf("%d",&t);
while(t--)
{
Point A, B, C, D, E, F;
cin >> A.x >> A.y >> B.x >>B.y >> C.x >>C.y;
D = GetPoint(A,B,C);
E = GetPoint(B,C,A);
F = GetPoint(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return ;
}