Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。

时间:2022-10-01 20:54:13
/**
题目:Trees in a Wood. UVA 10214
链接:https://vjudge.net/problem/UVA-10214
题意:给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。
思路:
坐标轴上结果为4,其他四个象限和第一个象限看到的数量一样。所以求出x在[1,a]和y在[1,b]的x/y互质对数即可。
由于a比较小,所以枚举x,然后求每一个x与[1,b]的互质对数。
方法:
1<=y<=x; 那么phi(x)为结果。
x+1<=y<=2*x; 那么phi(x)为结果。因为gcd(x+i,x) = gcd(x,i);
2*x+1<=y<=3*x; 同理
.
.
k*x+1<=y<=b; 直接暴力枚举判断即可了 当然求x与[1,b]范围内的互质对数还可以使用容斥做法。求出x的所有素因子。
求b范围内有多少个数与x含有至少一个相同的素因子。由于会出现重复计算,所以容斥处理。
*/ #include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<set>
#include<cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf = 0x3f3f3f3f;
const int maxn = 2e3+;
int a, b;
int phi[maxn];
void init()
{
for(int i = ; i < maxn; i++) phi[i] = i;
for(int i = ; i < maxn; i+=) phi[i]/=;
for(int i = ; i < maxn; i+=){
if(phi[i]==i){
for(int j = i; j < maxn; j+=i){
phi[j] = phi[j]/i*(i-);
}
}
}
}
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
ll f(int a)
{
return 1LL**a+;
}
int main()
{
init();
while(scanf("%d%d",&a,&b)==&&a){
ll ans = ;
for(int i = ; i <= a; i++){
ans += b/i*phi[i];
int st = b/i*i+;
int et = b/i*i+b%i;
for(int j = st; j <= et; j++){
if(gcd(i,j)==) ans++;
}
}
printf("%.7lf\n",(ans*+)*1.0/(f(a)*f(b)-));
}
return ;
}

莫比乌斯做法: #include<iostream>
#include<cstring>
#include<algorithm>
#include<cstdio>
#include<vector>
#include<set>
#include<cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int inf = 0x3f3f3f3f;
const int maxn = 2e3+;
int a, b;
int mu[maxn];
int prime[maxn], tot;
void init()
{
mu[] = ;
tot = ;
for(int i = ; i < maxn; i++){
if(prime[i]==){
prime[++tot] = i;
mu[i] = -;
}
for(int j = ; prime[j]*i<maxn; j++){
prime[prime[j]*i] = ;
if(i%prime[j]==){
mu[prime[j]*i] = ;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
}
ll f(int a)
{
return 1LL**a+;
}
int main()
{
init();
while(scanf("%d%d",&a,&b)==&&a){
ll ans = ;
/*for(int i = 1; i <= a; i++){
ans += b/i*phi[i];
int st = b/i*i+1;
int et = b/i*i+b%i;
for(int j = st; j <= et; j++){
if(gcd(i,j)==1) ans++;
}
}*/
int mis = min(a,b);
for(int i = ; i <= mis; i++){
ans += mu[i]*1LL*(a/i)*(b/i);
}
printf("%.7lf\n",(ans*+)*1.0/(f(a)*f(b)-));
}
return ;
}

Trees in a Wood. UVA 10214 欧拉函数或者容斥定理 给定a,b求 |x|<=a, |y|<=b这个范围内的所有整点不包括原点都种一棵树。求出你站在原点向四周看到的树的数量/总的树的数量的值。的更多相关文章

  1. Trees in a Wood UVA - 10214 欧拉函数模板

    太坑惹,,,没用longlong各种WA #include <iostream> #include <string.h> #include <cstdio> #in ...

  2. GuGuFishtion HDU - 6390 (欧拉函数,容斥)

    GuGuFishtion \[ Time Limit: 1500 ms\quad Memory Limit: 65536 kB \] 题意 给出定义\(Gu(a, b) = \frac{\phi(ab ...

  3. UVa 10837 &lpar;欧拉函数 搜索&rpar; A Research Problem

    发现自己搜索真的很弱,也许做题太少了吧.代码大部分是参考别人的,=_=|| 题意: 给出一个phi(n),求最小的n 分析: 回顾一下欧拉函数的公式:,注意这里的Pi是互不相同的素数,所以后面搜索的时 ...

  4. UVa 11440 &lpar;欧拉函数&rpar; Help Tomisu

    题意: 给出N和M,统计区间x ∈ [2, N!],x满足所有素因子都大于M的x的个数. 分析: 首先将问题转化一下,所有素因子都大于M 等价于 这个数与M!互素 对于k大于M!,k与M!互素等价于 ...

  5. UVA 11426 &lpar;欧拉函数&amp&semi;&amp&semi;递推&rpar;

    题意:给你一个数N,求N以内和N的最大公约数的和 解题思路: 一开始直接想暴力做,4000000的数据量肯定超时.之后学习了一些新的操作. 题目中所要我们求的是N内gcd之和,设s[n]=s[n-1] ...

  6. UVA - 11426 欧拉函数(欧拉函数表)

    题意: 给一个数 N ,求 N 范围内所有任意两个数的最大公约数的和. 思路: f 数组存的是第 n 项的 1~n-1 与 n 的gcd的和,sum数组存的是 f 数组的前缀和. sum[n]=f[1 ...

  7. UVa 11426 &lpar;欧拉函数 GCD之和&rpar; GCD - Extreme &lpar;II&rpar;

    题意: 求sum{gcd(i, j) | 1 ≤ i < j ≤ n} 分析: 有这样一个很有用的结论:gcd(x, n) = i的充要条件是gcd(x/i, n/i) = 1,因此满足条件的x ...

  8. UVA&Tab; 10820 欧拉函数模板题

    这道题就是一道简单的欧拉函数模板题,需要注意的是,当(1,1)时只有一个,其他的都有一对.应该对欧拉函数做预处理,显然不会超时. #include<iostream> #include&l ...

  9. GCD - Extreme &lpar;II&rpar; UVA - 11426 欧拉函数与gcd

    题目大意: 累加从1到n,任意两个数的gcd(i,j)(1=<i<n&&i<j<=n). 题解:假设a<b,如果gcd(a,b)=c.则gcd(a/c,b ...

随机推荐

  1. Nunit工具做C&num;的单元测试

      Nunit工具做C#的单元测试 学习心得 编写人:罗旭成 时间:2013年9月2日星期一 1.开发人员如何做单元测试 单元测试是针对最小的可测试软件元素(单元)的,它所测试的内容包括单元的内部结构 ...

  2. CodeDom

    细说CodeDom 在上一篇文章中,老周厚着脸皮给大伙介绍了代码文档的基本结构,以及一些代码对象与CodeDom类型的对应关系. 在评论中老周看到有朋友提到了 Emit,那老周就顺便提一下.严格上说, ...

  3. img下出现几像素空白的问题

    先看一个例子和效果,应该就会明白我的问题了. <meta http-equiv="Content-Type" content="text/html; charset ...

  4. 009&period; C&num;中的WebBrowser控件的属性、方法及操作演示代码&lpar;转&rpar;

    本文转自 http://www.open-open.com/code/view/1430559996802 0.常用方法 Navigate(string urlString):浏览urlString表 ...

  5. C&plus;&plus;学习笔记(四):枚举

    枚举用来代替静态常量,优点就是可以确定值的范围,而常量则无法确定范围: 常量表示法: ; ; ; ; ; bool func(int type) { //范围检查 || type > ) thr ...

  6. 页面全部加载完毕和页面dom树加载完毕

    dom树加载完毕 $(document).ready()//原生写法document.ready = function (callback) {            ///兼容FF,Google   ...

  7. Android 中文API (69) —— BluetoothAdapter&lbrack;蓝牙&rsqb;

    前言 本章内容是  android.bluetooth.BluetoothAdapter,为Android蓝牙部分的章节翻译.本地蓝牙设备的适配类,所有的蓝牙操作都要通过该类完成.版本为 Androi ...

  8. vue初学实践之路——vue简单日历组件&lpar;1&rpar;

    ---恢复内容开始--- 最近做的项目有一个需求,需要有一个日历组件供预定功能使用,之前的代码过于繁琐复杂,所以我采用vue重写了这个组件. npm.vue等等安装. 只是一个简单的日历组件,所以并不 ...

  9. mysql 时间戳格式化函数FROM&lowbar;UNIXTIME和UNIX&lowbar;TIMESTAMP函数的使用说明

    我们一般使用字段类型int(11)时间戳来保存时间,这样方便查询时提高效率.但这样有个缺点,显示的时间戳,很难知道真实日期时间. MySQL提供了一个时间戳格式化函数from_unixtime来转换格 ...

  10. Oracle进程中的 LOCAL&equals;NO 和 LOCAL&equals;YES

    我们在服务器上用sqlplus 连接数据库,在查看进程,会多出一条记录: oracle 16007 16006 0 10:27 ? 00:00:00 oraclenewccs (DESCRIPTION ...