/*
数字三角形,要求第K大的值,可以推知,如果得知k的范围,那么一定是在上一行可转移状态的对应范围内(反证法可以证明),这个在背包九讲里也有提及
*/
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int n,k,f[110][110][15],z[110][110],y[1010];
int main()
{
freopen("live.in","r",stdin);
freopen("live.out","w",stdout);
scanf("%d%d",&n,&k);
for (int a=1;a<=n;a++)
for (int b=1;b<=a;b++)
scanf("%d",&z[a][b]);
for (int a=1;a<=n;a++)
for (int b=1;b<=a;b++)
for (int c=1;c<=k;c++)
f[a][b][c]=-12345;
f[1][1][1]=z[1][1];
for (int a=1;a<n;a++)
for (int b=1;b<=a;b++)
for (int c=1;c<=k;c++)
if (f[a][b][c]!=-12345)
{
int v=f[a][b][c]+z[a+1][b];
for (int d=1;d<=k;d++)
if (v>=f[a+1][b][d])
{
for (int e=k;e>d;e--)
f[a+1][b][e]=f[a+1][b][e-1];
f[a+1][b][d]=v;
break;
}
v=f[a][b][c]+z[a+1][b+1];
for (int d=1;d<=k;d++)
if (v>=f[a+1][b+1][d])
{
for (int e=k;e>d;e--)
f[a+1][b+1][e]=f[a+1][b+1][e-1];
f[a+1][b+1][d]=v;
break;
}
}
int cnt=0;
for (int a=1;a<=n;a++)
for (int b=1;b<=k;b++)
y[++cnt]=f[n][a][b];
sort(y+1,y+cnt+1);
printf("%d\n",y[cnt-k+1]);
return 0;
}