重复造*之RSA算法(一) 大素数生成

时间:2024-08-30 19:03:32

出于无聊, 打算从头实现一遍RSA算法

第一步, 大素数生成

Java的BigInteger里, 有个现成的方法

  public static BigInteger probablePrime(int bitLength, Random rnd) {

  bitLength是期望生成的素数的二进制位数, rnd是随机数发生器

  函数注释表明, 这个方法的返回值为合数的概率为2^-100

生成100个1024位的素数, 耗时13471ms

但是显然我不打算直接使用这个函数, 要做就从最底层做起!

目前的做法是基于费马素性检测

假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

也就是说, 如果p为素数, 那么对于任何a<p, 有

a ^ p % p == a   成立

而它的逆命题则至少有1/2的概率成立

那么我们就可以通过多次素性检测, 来减少假素数出现的概率

而素数定理, 又指出了素数的密度与ln(x)成反比, 也就是说, 我们可以先随机生成一个n bit的整数, 如果不是素数, 则继续向后取, 那么, 大概取n个数, 就能碰到一个素数

原理大概就是这样

中间有一些优化, 是为了减少对大整数的直接计算

2015.2.25更新

Miller-Rabin检测  http://www.matrix67.com/blog/archives/234

Carmichael数: 本身为合数, 但是无论做多少次费马检查, 都会被判定为素数

为了避免Carmichael数, 就有了新的检查方式

1. 如果p是素数,x是小于p的正整数,且x^2 mod p = 1,那么要么x=1,要么x=p-1

2. 尽可能提取因子2,把n-1表示成d*2^r,如果n是一个素数,那么或者a^d mod n=1,或者存在某个i使得a^(d*2^i) mod n=n-1 ( 0<=i<r )

生成100个1024位素数, 耗时182141ms

性能不到标准库的十分之一

附上代码如下

package com.steven.rsa;

import java.math.BigInteger;
import java.security.SecureRandom;
import java.util.Random; /**
*
* @author steven
*/
public class Utils { private static Random ran = null; static {
ran = new SecureRandom();
} /**
* 计算 base^exp % n
*
* @param base
* @param exp
* @param n
* @return
*/
public static BigInteger expmod(int base, BigInteger exp, BigInteger n) {
if (exp.equals(BigInteger.ZERO)) {
return BigInteger.ONE;
} if (!exp.testBit(0)) {//如果为偶数
return expmod(base, exp.divide(BigInteger.valueOf(2)), n).pow(2).remainder(n);
} else {
return (expmod(base, exp.subtract(BigInteger.ONE).divide(BigInteger.valueOf(2)), n).pow(2).multiply(BigInteger.valueOf(base))).remainder(n);
}
} /**
* 费马测试, 如果返回false, 则n肯定为合数, 如果为true, 则n有一半以上的概率为素数
*
* @param n
* @return
*/
public static boolean fermatTest(BigInteger n) {
int base = 0;
if (n.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) < 0) {
base = ran.nextInt(n.intValue() - 1) + 1;
} else {
base = ran.nextInt(Integer.MAX_VALUE - 1) + 1;
}
if (expmod(base, n, n).equals(BigInteger.valueOf(base))) {
return true;
} else {
return false;
}
} /**
* Miller-Rabin测试
*
* @param n
* @return
*/
public static boolean passesMillerRabin(BigInteger n) {
int base = 0;
if (n.compareTo(BigInteger.valueOf(Integer.MAX_VALUE)) < 0) {
base = ran.nextInt(n.intValue() - 1) + 1;
} else {
base = ran.nextInt(Integer.MAX_VALUE - 1) + 1;
} BigInteger thisMinusOne = n.subtract(BigInteger.ONE);
BigInteger m = thisMinusOne;
while (!m.testBit(0)) {
m = m.shiftRight(1);
BigInteger z = expmod(base, m, n);
if (z.equals(thisMinusOne)) {
break;
} else if (z.equals(BigInteger.ONE)) { } else {
return false;
}
}
return true;
} public static boolean isPrime(BigInteger n) {
//copy自jdk源码, n的bit数越多, 需要的检测次数就越少
//注释说是根据标准 ANSI X9.80, "PRIME NUMBER GENERATION, PRIMALITY TESTING, AND PRIMALITY CERTIFICATES".
//我不知道为什么
int sizeInBits = n.bitLength();
int tryTime = 0;
if (sizeInBits < 100) {
tryTime = 50;
} if (sizeInBits < 256) {
tryTime = 27;
} else if (sizeInBits < 512) {
tryTime = 15;
} else if (sizeInBits < 768) {
tryTime = 8;
} else if (sizeInBits < 1024) {
tryTime = 4;
} else {
tryTime = 2;
}
return isPrime(n, tryTime);
} /**
* 多次调用素数测试, 判定输入的n是否为质数
*
* @param n
* @param tryTime
* @return
*/
public static boolean isPrime(BigInteger n, int tryTime) {
for (int i = 0; i < tryTime; i++) {
if (!passesMillerRabin(n)) {
return false;
}
}
return true;
} /**
* 产生一个n bit的素数
*
* @param bitCount
* @return
*/
public static BigInteger getPrime(int bitCount) {
//随机生成一个n bit的大整数
BigInteger init = new BigInteger(bitCount, ran);
//如果n为偶数, 则加一变为奇数
if (!init.testBit(0)) {
init = init.setBit(0);
}
int i = 0;
//基于素数定理, 平均只需要不到n次搜索, 就能找到一个素数
while (!isPrime(init)) {
i++;
init = init.add(BigInteger.valueOf(2));
}
//System.out.println(String.format("try %d\ttimes", i));
return init;
}
}