POJ 3384 Feng Shui --直线切平面

时间:2024-08-27 23:07:08

题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大。

POJ 3384	 Feng Shui --直线切平面

解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠。 那么我们把所有边都向内推进r,那么形成的多边形,可知两个圆形地毯的中心就一定在这个多边形边界上,最优的情况下是在此新凸包的最远点对上。

初始多边形为(-1000,-1000)到(1000,1000)的矩形,那么我们可以模拟把每条边都推进,每次切出新的凸多边形,然后得出最后的凸多边形,然后n^2枚举求最远点对即可。这里用到直线切割一个凸多边形的算法。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define Mod 1000000007
#define pi acos(-1.0)
#define eps 1e-8
using namespace std; struct Point{
double x,y;
Point(double x=, double y=):x(x),y(y) {}
void input() { scanf("%lf%lf",&x,&y); }
};
typedef Point Vector;
struct Line{
Point p;
Vector v;
double ang;
Line(){}
Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); }
Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); }
bool operator < (const Line &L)const { return ang < L.ang; }
};
int dcmp(double x) {
if(x < -eps) return -;
if(x > eps) return ;
return ;
}
template <class T> T sqr(T x) { return x * x;}
Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == && dcmp(a.y-b.y) == ; }
double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
Vector VectorUnit(Vector x){ return x / Length(x);}
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
double angle(Vector v) { return atan2(v.y, v.x); } Point GetLineIntersection(Line A, Line B) {
Vector u = A.p - B.p;
double t = Cross(B.v, u) / Cross(A.v, B.v);
return A.p + A.v*t;
}
double DisP(Point A,Point B) {
return Length(B-A);
}
int LineCrossPolygon(Point& L1,Point& L2,Point* p,int n,Point* poly) {
int m = ;
for(int i=,j;i<n;i++) {
if(dcmp(Cross(L1-p[i],L2-p[i])) >= ) { poly[m++] = p[i]; continue; }
j = (i-+n)%n;
if(dcmp(Cross(L1-p[j],L2-p[j])) > ) poly[m++] = GetLineIntersection(Line(L1,L2-L1),Line(p[j],p[i]-p[j]));
j = (i++n)%n;
if(dcmp(Cross(L1-p[j],L2-p[j])) > ) poly[m++] = GetLineIntersection(Line(L1,L2-L1),Line(p[j],p[i]-p[j]));
}
return m;
} Line L[];
Point poly[][],p[],q1,q2;
int len[]; int main()
{
int i,j,pre,now,n;
double r;
while(scanf("%d%lf",&n,&r)!=EOF)
{
poly[][] = Point(-,-);
poly[][] = Point(,-);
poly[][] = Point(,);
poly[][] = Point(-,);
len[pre = ] = ;
for(i=;i<n;i++) p[i].input();
for(i=;i<n;i++) {
now = pre^;
Vector nv = Normal(p[i]-p[(i+)%n]);
q1 = p[i] + nv*r; q2 = q1+p[(i+)%n]-p[i];
len[now] = LineCrossPolygon(q2,q1,poly[pre],len[pre],poly[now]);
pre = now;
}
double Maxi = -Mod;
for(i=;i<len[now];i++)
for(j=i;j<len[now];j++) {
if(dcmp(DisP(poly[now][i],poly[now][j])-Maxi) > ) {
Maxi = DisP(poly[now][i],poly[now][j]);
q1 = poly[now][i], q2 = poly[now][j];
}
}
printf("%.6f %.6f %.6f %.6f\n",q1.x,q1.y,q2.x,q2.y);
}
return ;
}