题目大意:一个人很信“Feng Shui”,他要在房间里放两个圆形的地毯。
这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面。求这两个地毯可以覆盖的最大范围。并输出这两个地毯的圆心。
思路:我们当然希望这两个圆形的地毯离得尽量的远,这种话两个圆之间的重叠区域就会越小,总的覆盖区域就越大。
那我们就先把每一条边向内推进地毯的半径的距离,然后求一次半平面交,这个求出的半平面的交集就是圆心能够取得地方,然后就暴力求出这当中的最远点对即可了。
CODE:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 110
#define EPS 1e-10
#define DCMP(a) (fabs(a) < EPS)
using namespace std; struct Point{
double x,y; Point(double _ = .0,double __ = .0):x(_),y(__) {}
Point operator +(const Point &a)const {
return Point(x + a.x,y + a.y);
}
Point operator -(const Point &a)const {
return Point(x - a.x,y - a.y);
}
Point operator *(double a)const {
return Point(x * a,y * a);
}
void Read() {
scanf("%lf%lf",&x,&y);
}
}point[MAX],p[MAX],polygen[MAX];
struct Line{
Point p,v;
double alpha; Line(Point _,Point __):p(_),v(__) {
alpha = atan2(v.y,v.x);
}
Line() {}
bool operator <(const Line &a)const {
return alpha < a.alpha;
}
}line[MAX],q[MAX]; int points,lines;
double adjustment; inline double Cross(const Point &a,const Point &b)
{
return a.x * b.y - a.y * b.x;
} inline double Calc(const Point &a,const Point &b)
{
return sqrt((a.x - b.x) * (a.x - b.x) +
(a.y - b.y) * (a.y - b.y));
} inline bool OnLeft(const Line &l,const Point &p)
{
return Cross(l.v,p - l.p) >= 0;
} inline void MakeLine(const Point &a,const Point &b)
{
Point p = a,v = b - a;
Point _v(-v.y / Calc(a,b),v.x / Calc(a,b));
p = _v * adjustment + p;
line[++lines] = Line(p,v);
} inline Point GetIntersection(const Line &a,const Line &b)
{
Point u = a.p - b.p;
double temp = Cross(b.v,u) / Cross(a.v,b.v);
return a.p + a.v * temp;
} int HalfPlaneIntersection()
{
int front = 1,tail = 1;
q[tail] = line[1];
for(int i = 2;i <= lines; ++i) {
while(front < tail && !OnLeft(line[i],p[tail - 1])) --tail;
while(front < tail && !OnLeft(line[i],p[front])) ++front;
if(DCMP(Cross(line[i].v,q[tail].v)))
q[tail] = OnLeft(line[i],q[tail].p) ? q[tail]:line[i];
else q[++tail] = line[i];
if(front < tail) p[tail - 1] = GetIntersection(q[tail],q[tail - 1]);
}
while(front < tail && !OnLeft(q[front],p[tail - 1])) --tail;
p[tail] = GetIntersection(q[tail],q[front]);
int re = 0;
for(int i = front;i <= tail; ++i)
polygen[++re] = p[i];
return re;
} pair<Point,Point> GetFarest(int cnt)
{
double max_length = -1.0;
pair<Point,Point> re;
for(int i = 1;i <= cnt; ++i)
for(int j = i;j <= cnt; ++j)
if(Calc(polygen[i],polygen[j]) > max_length) {
max_length = Calc(polygen[i],polygen[j]);
re.first = polygen[i];
re.second = polygen[j];
}
return re;
} int main()
{
cin >> points >> adjustment;
for(int i = 1;i <= points; ++i)
point[i].Read();
for(int i = points;i > 1; --i)
MakeLine(point[i],point[i - 1]);
MakeLine(point[1],point[points]);
sort(line + 1,line + lines + 1);
int cnt = HalfPlaneIntersection();
pair<Point,Point> re = GetFarest(cnt);
printf("%.6lf %.6lf %.6lf %.6lf\n",re.first.x,re.first.y,re.second.x,re.second.y);
return 0;
}