matlab之矩阵分解

时间:2024-08-23 13:07:38

矩阵分解

  矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积。

1.三角分解法:

要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permuted) 的上三角形矩阵)和一个下三角形矩阵,简称LU分解法。

注意:这种分解法所得到的上下三角形矩阵并非唯一,还可找到数个不同的一对上下三角形矩阵。

MATLAB:

[L,U]=lu(A),A为方阵,L为下三角矩阵,U为上三角矩阵。

2.QR分解法:

A为任意矩阵,将A矩阵分解成一个正规正交矩阵与上三角形矩阵。

Matlab:

[Q,R]=qr(A),A为M*N的矩阵,R为M*N的上三角矩阵,Q为M*M的矩阵。 A = Q*R

3.奇异值分解法:

是最可靠的分解法,但是花费时间是QR分解的10倍,

[U,S,V]=svd(A),其中U和V代表二个相互正交矩阵,而S代表一对角矩阵,原矩阵A不必为正方矩阵。

使用SVD分解法的用途是解最小平方误差法和数据压缩。

matlab:

[U,S,V]=svd(A)

 基础知识

1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为1,该矩阵称为单位矩阵

4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

matlab之矩阵分解

5.正交矩阵:

ATA=E(即A-1=AT)