同态加密算法简述

时间:2021-09-20 13:50:44

同态加密

如果我们有一个加密函数 f , 把明文A变成密文A’, 把明文B变成密文B’,也就是说 f(A) = A’ , f(B) = B’ 。另外我们还有一个解密函数 f1 能够将 f 加密后的密文解密成加密前的明文。

对于一般的加密函数,如果我们将A’和B’相加,得到C’。我们用 f1 对C’进行解密得到的结果一般是毫无意义的乱码。

但是,如果 f 是个可以进行同态加密的加密函数, 我们对C’使用 f1 进行解密得到结果C, 这时候的C = A + B。这样,数据处理权与数据所有权可以分离,这样企业可以防止自身数据泄露的同时,利用云服务的算力。

同态分类

a) 如果满足 f(A)+f(B)=f(A+B) , 我们将这种加密函数叫做加法同态
b) 如果满足 f(A)×f(B)=f(A×B) ,我们将这种加密函数叫做乘法同态。

如果一个加密函数f只满足加法同态,就只能进行加减法运算

如果一个加密函数f只满足乘法同态,就只能进行乘除法运算;

如果一个加密函数同时满足加法同态和乘法同态,称为全同态加密那么这个使用这个加密函数完成各种加密后的运算(加减乘除、多项式求值、指数、对数、三角函数)。

第一个满足加法和乘法同态的同态加密方法直到2009年才由Craig Gentry提出。

同态加密算法

  1. RSA 算法对于乘法操作是同态的。
  2. Paillier 算法则是对加法同态的。
  3. Gentry算法则是全同态的。

Paillier算法

原理

  1. http://www.tcnj.edu/~hagedorn/papers/CapstonePapers/OKeeffe/CapstoneOKeeffeCryptography.pdf
  2. http://slideplayer.com/slide/8488065/

实现

java版本

/** 
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/


import java.math.*;
import java.util.*;

/**
* Paillier Cryptosystem <br>
* <br>
* References: <br>
* [1] Pascal Paillier,
* "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes,"
* EUROCRYPT'99. URL:
* <a href="http://www.gemplus.com/smart/rd/publications/pdf/Pai99pai.pdf">http:
* //www.gemplus.com/smart/rd/publications/pdf/Pai99pai.pdf</a><br>
*
* [2] Paillier cryptosystem from Wikipedia. URL:
* <a href="http://en.wikipedia.org/wiki/Paillier_cryptosystem">http://en.
* wikipedia.org/wiki/Paillier_cryptosystem</a>
*
* @author Kun Liu (kunliu1@cs.umbc.edu)
* @version 1.0
*/

public class Paillier {

/**
* p and q are two large primes. lambda = lcm(p-1, q-1) =
* (p-1)*(q-1)/gcd(p-1, q-1).
*/

private BigInteger p, q, lambda;
/**
* n = p*q, where p and q are two large primes.
*/

public BigInteger n;
/**
* nsquare = n*n
*/

public BigInteger nsquare;
/**
* a random integer in Z*_{n^2} where gcd (L(g^lambda mod n^2), n) = 1.
*/

private BigInteger g;
/**
* number of bits of modulus
*/

private int bitLength;

/**
* Constructs an instance of the Paillier cryptosystem.
*
* @param bitLengthVal
* number of bits of modulus
* @param certainty
* The probability that the new BigInteger represents a prime
* number will exceed (1 - 2^(-certainty)). The execution time of
* this constructor is proportional to the value of this
* parameter.
*/

public Paillier(int bitLengthVal, int certainty) {
KeyGeneration(bitLengthVal, certainty);
}

/**
* Constructs an instance of the Paillier cryptosystem with 512 bits of
* modulus and at least 1-2^(-64) certainty of primes generation.
*/

public Paillier() {
KeyGeneration(512, 64);
}

/**
* Sets up the public key and private key.
*
* @param bitLengthVal
* number of bits of modulus.
* @param certainty
* The probability that the new BigInteger represents a prime
* number will exceed (1 - 2^(-certainty)). The execution time of
* this constructor is proportional to the value of this
* parameter.
*/

public void KeyGeneration(int bitLengthVal, int certainty) {
bitLength = bitLengthVal;
/*
* Constructs two randomly generated positive BigIntegers that are
* probably prime, with the specified bitLength and certainty.
*/

p = new BigInteger(bitLength / 2, certainty, new Random());
q = new BigInteger(bitLength / 2, certainty, new Random());

n = p.multiply(q);
nsquare = n.multiply(n);

g = new BigInteger("2");
lambda = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE))
.divide(p.subtract(BigInteger.ONE).gcd(q.subtract(BigInteger.ONE)));
/* check whether g is good. */
if (g.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).gcd(n).intValue() != 1) {
System.out.println("g is not good. Choose g again.");
System.exit(1);
}
}

/**
* Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function
* explicitly requires random input r to help with encryption.
*
* @param m
* plaintext as a BigInteger
* @param r
* random plaintext to help with encryption
* @return ciphertext as a BigInteger
*/

public BigInteger Encryption(BigInteger m, BigInteger r) {
return g.modPow(m, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare);
}

/**
* Encrypts plaintext m. ciphertext c = g^m * r^n mod n^2. This function
* automatically generates random input r (to help with encryption).
*
* @param m
* plaintext as a BigInteger
* @return ciphertext as a BigInteger
*/

public BigInteger Encryption(BigInteger m) {
BigInteger r = new BigInteger(bitLength, new Random());
return g.modPow(m, nsquare).multiply(r.modPow(n, nsquare)).mod(nsquare);

}

/**
* Decrypts ciphertext c. plaintext m = L(c^lambda mod n^2) * u mod n, where
* u = (L(g^lambda mod n^2))^(-1) mod n.
*
* @param c
* ciphertext as a BigInteger
* @return plaintext as a BigInteger
*/

public BigInteger Decryption(BigInteger c) {
BigInteger u = g.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).modInverse(n);
return c.modPow(lambda, nsquare).subtract(BigInteger.ONE).divide(n).multiply(u).mod(n);
}

/**
* sum of (cipher) em1 and em2
*
* @param em1
* @param em2
* @return
*/

public BigInteger cipher_add(BigInteger em1, BigInteger em2) {
return em1.multiply(em2).mod(nsquare);
}

/**
* main function
*
* @param str
* intput string
*/

public static void main(String[] str) {
/* instantiating an object of Paillier cryptosystem */
Paillier paillier = new Paillier();
/* instantiating two plaintext msgs */
BigInteger m1 = new BigInteger("20");
BigInteger m2 = new BigInteger("60");
/* encryption */
BigInteger em1 = paillier.Encryption(m1);
BigInteger em2 = paillier.Encryption(m2);
/* printout encrypted text */
System.out.println(em1);
System.out.println(em2);
/* printout decrypted text */
System.out.println(paillier.Decryption(em1).toString());
System.out.println(paillier.Decryption(em2).toString());

/*
* test homomorphic properties -> D(E(m1)*E(m2) mod n^2) = (m1 + m2) mod
* n
*/

// m1+m2,求明文数值的和
BigInteger sum_m1m2 = m1.add(m2).mod(paillier.n);
System.out.println("original sum: " + sum_m1m2.toString());
// em1+em2,求密文数值的乘
BigInteger product_em1em2 = em1.multiply(em2).mod(paillier.nsquare);
System.out.println("encrypted sum: " + product_em1em2.toString());
System.out.println("decrypted sum: " + paillier.Decryption(product_em1em2).toString());

/* test homomorphic properties -> D(E(m1)^m2 mod n^2) = (m1*m2) mod n */
// m1*m2,求明文数值的乘
BigInteger prod_m1m2 = m1.multiply(m2).mod(paillier.n);
System.out.println("original product: " + prod_m1m2.toString());
// em1的m2次方,再mod paillier.nsquare
BigInteger expo_em1m2 = em1.modPow(m2, paillier.nsquare);
System.out.println("encrypted product: " + expo_em1m2.toString());
System.out.println("decrypted product: " + paillier.Decryption(expo_em1m2).toString());

//sum test
System.out.println("--------------------------------");
Paillier p = new Paillier();
BigInteger t1 = new BigInteger("21");System.out.println(t1.toString());
BigInteger t2 = new BigInteger("50");System.out.println(t2.toString());
BigInteger t3 = new BigInteger("50");System.out.println(t3.toString());
BigInteger et1 = p.Encryption(t1);System.out.println(et1.toString());
BigInteger et2 = p.Encryption(t2);System.out.println(et2.toString());
BigInteger et3 = p.Encryption(t3);System.out.println(et3.toString());
BigInteger sum = new BigInteger("1");
sum = p.cipher_add(sum, et1);
sum = p.cipher_add(sum, et2);
sum = p.cipher_add(sum, et3);
System.out.println("sum: "+sum.toString());
System.out.println("decrypted sum: "+p.Decryption(sum).toString());
System.out.println("--------------------------------");
}
}

javascript版本

go版本

更多

https://zhuanlan.zhihu.com/p/31822335