4月份很快就过半了,最近都在看WPF,有点落伍了...本来想写一点读书笔记的,还没想好要怎么写。所以为了能够达到每月一篇博客的目标,今天先说一个LeetCode上的面试题:Unique Binary Search Trees。
题目简单翻译过来就是说:
给定n个不同节点,问:可以构造出多少种异构的二叉搜索树。比方说n=3时有5种:
3 3 3 2 1
\ / / / \ \
2 2 1 1 3 2
/ / \ \
1 1 2 3
一般来说,遇到这种问题多半是找规律,总结出数学公式然后解决之。找规律前,首先要看我们有哪些可以利用的条件。
这里可用的条件很有限但也很明确:二叉搜索树。也就是其任意一部分二叉树都满足左子树节点都小于(或者大于)根节点;右子树节点都大于(或者小于)根节点。
我们已经有了n=3的结果,那么来看看n=4时的情况。我们知道,任何一个节点都可以成为一个根节点,那么:
- 如果以1为树根,那么剩下的三个节点都分布在该树的右子树上;
- 如果以2为树根,那么节点1必然是其左子树上的唯一节点,而3、4只可能在其优节点上;
- 如果以3为树根,那么节点2、3在其左子树上,而节点4是其右子树上的唯一节点;
- 如果以4为树根,那么甚于节点都在其左子树上;
这个简单的分析过程很快就将规律呈现了出来!!
对于n=4的情况,其异构结果就是各种独立情况下,左子树和右子树异构方式的排列数之和。用公式表示就是:f(4) = f(0) * f(3) + f(1) * f(2) + f(2) * f(1) + f(3) * f(0)。整一个典型的递归实现。唯一需要考虑的点就是你需要缓存一下中间数据,因为f(2)和f(3)分别被调用了2次。
class Solution {
public:
int numTrees(int n) {
static vector<int> cached(, );
if (n > cached.size())
{
cached.resize(n, );
} if ( == n)
{
return ;
} if (cached[n - ] != )
{
return cached[n - ];
}
else
{
for (int i = ; i < n; ++i)
{
cached[n - ] += numTrees(i) * numTrees(n - i - );
} return cached[n - ];
}
}
};
顺带因为打算以后要有Python,所以附带上Python的代码。刚开始学着写Python,写着有点难过...(有没有更好的写法?)
class Solution:
# @return an integer
def numTrees(self, n):
if 0 == n:
return 1 cached = [1]
if n > len(cached):
result = 0;
for i in range(n):
index = n - i - 1 left_part_result = self.numTrees(i)
right_part_result = self.numTrees(index) result += left_part_result * right_part_result if index == len(cached):
cached[len(cached):] = [right_part_result] cached[len(cached):] = [result] return result
else:
return cached[n - 1];
这题目的背景是一个称之为Catalan Number的数。也可以参看百度百科。通过了解Catalan Number,我们会发现他的诸多应用。比方说凸多边形的最优三角划分就是这个问题的拓展。