1 second
256 megabytes
standard input
standard output
Permutation p is an ordered set of integers
p1, p2, ..., pn, consisting of
n distinct positive integers not larger than
n. We'll denote as
n the length of permutation p1, p2, ..., pn.
Your task is to find such permutation p of length
n, that the group of numbers
|p1 - p2|, |p2 - p3|, ..., |pn - 1 - pn|
has exactly k distinct elements.
The single line of the input contains two space-separated positive integers
n, k (1 ≤ k < n ≤ 105).
Print n integers forming the permutation. If there are multiple answers, print any of them.
3 2
1 3 2
3 1
1 2 3
5 2
1 3 2 4 5
By |x| we denote the absolute value of number
x.
求n个数的序列,相邻两个数的绝对值的不同取值有k个 但详细哪k个数不限
#include <iostream>
#include <stdio.h>
#include <string>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 100009
using namespace std;
int a[N];
int vis[N]; int main()
{
int n,k;
while(~scanf("%d%d",&n,&k))
{
int t=n;
int m=1; for(int i=1;i<=k;i+=2)
{
a[i]=m;
m++;
}
for(int i=2;i<=k;i+=2)
{
a[i]=t;
t--;
} if(k%2==0)
{
for(int i=k+1;i<=n;i++)
a[i]=a[i-1]-1;
}
else
for(int i=k+1;i<=n;i++)
a[i]=a[i-1]+1; for(int i=1;i<n;i++)
cout<<a[i]<<" ";
cout<<a[n]<<endl;
}
return 0;
}