Dreamoon loves summing up something for no reason. One day he obtains two integers a and b occasionally. He wants to calculate the sum of all nice integers. Positive integer x is called nice if and , where k is some integer number in range[1, a].
By we denote the quotient of integer division of x and y. By we denote the remainder of integer division of x andy. You can read more about these operations here: http://goo.gl/AcsXhT.
The answer may be large, so please print its remainder modulo 1 000 000 007 (109 + 7). Can you compute it faster than Dreamoon?
The single line of the input contains two integers a, b (1 ≤ a, b ≤ 107).
Print a single integer representing the answer modulo 1 000 000 007 (109 + 7).
1 1
0
For the first sample, there are no nice integers because is always zero.
For the second sample, the set of nice integers is {3, 5}.
题意:给你a,b,现在对所有x满足 div(x,b)/mod(x,b) =k (1<=k<=a) 的x求和 取摸.
题解: 设y=div(x,b),z=mod(x,b),
可以得到
y=z*k,y*b+z=x,联立得
(kb+1)z=x,
下面用到求和公式,
然后假设k为常量,得到x=b(b-1)*(kb+1)/2,
最后k还原为变量,得到x=b(b-1)/2*[(1+a)a*b/2+a]
///
#include<bits/stdc++.h>
using namespace std ;
typedef long long ll;
#define mem(a) memset(a,0,sizeof(a))
inline ll read()
{
ll x=,f=;
char ch=getchar();
while(ch<''||ch>'')
{
if(ch=='-')f=-;
ch=getchar();
}
while(ch>=''&&ch<='')
{
x=x*+ch-'';
ch=getchar();
}
return x*f;
}
//****************************************
ll mod =;
#define maxn 100000+5
ll a,b;
int main(){
a=read(),b=read();
a=((b*((a*(a+)/)%mod))%mod+a)%mod;b=((b*(b-))/)%mod;
cout<<(a*b)%mod<<endl;
return ;
}
代码