【题目链接】
http://www.lydsy.com/JudgeOnline/problem.php?id=3676
【题意】
给定一个字符串,定义一个串的权值为长度*出现次数,求最大权的回文子串。
【思路】
马拉车求出本质不同的回文子串。
对于一个回文子串,在SAM中用倍增法在O(logn)的时间得到它的出现次数,即SAM中每个节点的right集大小,倍增数组和right都可以通过提前处理得到。
更新答案即可。
先来考虑一个简单的问题:
给出一个串S(|S|<=1000000)和M个询问,每次询问S中[si,ti]这一段串在总串中出现过几次。显然我们可以建出后缀数组并用二分+ST表简单地完成。但如果我们一定要用后缀自动机的知识呢?我们会发现,倘若我们能快速找到一个节点(状态)表示当前s~t这一段,只需直接调用它的size即可。(有关size的预处理:在SAM建立好之后,用所有点的size去累加它的parent的size)那么如何快速找到这样一个状态呢?首先SAM有一个性质:把每一个节点向它的parent连边,得到的树是原串的逆序串的后缀树。(只是这棵后缀树压缩后的边权都不知道)也就是说,如果我们构建出一棵SAM,它将同时有后缀树和trie的性质。举个例子,比如字符串baabaaa。设询问为s=5,t=6首先画出对应的后缀树(空节点不再画出):注意此时后缀树中“浅”的点表示的是“后缀”。我们先跑出从1开始到t的状态s,此时设我们在SAM中的节点p。样例里p对应在后缀树的最下面那个点。但是我们发现1~t的状态太长了,我们只需要s~t的状态。这样我们可以在这棵后缀树上倍增,能往某个祖先跑就往某个祖先跑。能跑的依据就是该祖先的深度>=t-s+1这样,我们就跑到了p节点在后缀树上的父亲的父亲,然后直接在SAM里调用它的信息即可。这里还有一个细节问题:如果询问是s=3,t=6,应该返回哪个点呢?这个时候发现不能完全覆盖,要不一个点少一些,要不一个点多一些。显然要把剩下的部分也选进去,也就是说仍然在p这个点。合法性显然,且可以证明这样最优。Quote from Here
【代码】
#include<set>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define trav(u,i) for(int i=front[u];i;i=e[i].nxt)
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
#define rep(a,b,c) for(int a=(b);a>=(c);a--)
using namespace std; typedef long long ll;
const int N = 6e5+;
const int D = ; char s[N];
int n,p[N]; struct SAM
{ ll ans;
int sz,last,ch[N][],fa[N],R[N],pos[N],l[N],b[N],cnt[N],fat[N][D];
SAM()
{
sz=ans=; last=++sz;
memset(cnt,,sizeof(cnt));
memset(R,,sizeof(R));
memset(fat,,sizeof(fat));
}
void add(int c,int id)
{
int np=++sz,p=last; last=np;
l[np]=l[p]+; R[np]=; pos[id]=last;
for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=np;
if(!p) fa[np]=;
else {
int q=ch[p][c];
if(l[q]==l[p]+) fa[np]=q;
else {
int nq=++sz; l[nq]=l[p]+;
memcpy(ch[nq],ch[q],sizeof(ch[q]));
fa[nq]=fa[q];
fa[q]=fa[np]=nq;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=nq;
}
}
}
void get_pre()
{
FOR(i,,sz) cnt[l[i]]++;
FOR(i,,n) cnt[i]+=cnt[i-];
rep(i,sz,) b[cnt[l[i]]--]=i;
rep(i,sz,) R[fa[b[i]]]+=R[b[i]]; FOR(i,,sz) {
fat[i][]=fa[i];
FOR(j,,D-)
fat[i][j]=fat[fat[i][j-]][j-];
}
}
void get_ans(int u,int v)
{
int x=pos[v];
for(int i=D-;i>=;i--) {
int t=fat[x][i];
if(l[t]>=v-u+) x=t;
}
ans=max(ans,(ll)R[x]*(v-u+));
} } sam; void Manacher()
{
int mx=,id;
for(int i=;i<=n;i++) {
if(mx>i) p[i]=min(mx-i,p[*id-i-]);
else p[i]=;
while(s[i+p[i]+]==s[i-p[i]]) {
p[i]++;
sam.get_ans(i-p[i]+,i+p[i]);
}
if(p[i]+i>mx) mx=p[i]+i,id=i;
}
mx=;
for(int i=;i<=n;i++) {
if(mx>i) p[i]=min(mx-i-,p[*id-i]);
else p[i]=,sam.get_ans(i,i);
while(s[i+p[i]]==s[i-p[i]]) {
p[i]++;
sam.get_ans(i-p[i]+,i+p[i]-);
}
if(p[i]+i>mx) mx=p[i]+i,id=i;
}
} int main()
{
scanf("%s",s+);
n=strlen(s+);
FOR(i,,n) sam.add(s[i]-'a',i);
sam.get_pre();
s[]='+',s[n+]='-';
Manacher();
printf("%lld",sam.ans);
return ;
}