=====================================================
LIRe源代码分析系列文章列表:
LIRe 源代码分析 2:基本接口(DocumentBuilder)
LIRe 源代码分析 3:基本接口(ImageSearcher)
LIRe 源代码分析 4:建立索引(DocumentBuilder)[以颜色布局为例]
LIRe 源代码分析 6:检索(ImageSearcher)[以颜色布局为例]
=====================================================
前几篇文章介绍了LIRe 的基本接口。现在来看一看它的实现部分,本文先来看一看建立索引((DocumentBuilder))部分。不同的特征向量提取方法的建立索引的类各不相同,它们都位于“net.semanticmetadata.lire.impl”中,如下图所示:
由图可见,每一种方法对应一个DocumentBuilder和一个ImageSearcher,类的数量非常的多,无法一一分析。在这里仅分析一个比较有代表性的:颜色布局。
颜色直方图建立索引的类的名称是ColorLayoutDocumentBuilder,该类继承了AbstractDocumentBuilder,它的源代码如下所示:
/* * This file is part of the LIRe project: http://www.semanticmetadata.net/lire * LIRe is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRe is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRe; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the following paper in any publication mentioning Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval 鈥� * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * * http://doi.acm.org/10.1145/1459359.1459577 * * Copyright statement: * -------------------- * (c) 2002-2011 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire */ package net.semanticmetadata.lire.impl; import net.semanticmetadata.lire.AbstractDocumentBuilder; import net.semanticmetadata.lire.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.ColorLayout; import net.semanticmetadata.lire.utils.ImageUtils; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import java.awt.image.BufferedImage; import java.util.logging.Logger; /** * Provides a faster way of searching based on byte arrays instead of Strings. The method * {@link net.semanticmetadata.lire.imageanalysis.ColorLayout#getByteArrayRepresentation()} is used * to generate the signature of the descriptor much faster. * User: Mathias Lux, mathias@juggle.at * Date: 30.06.2011 */ public class ColorLayoutDocumentBuilder extends AbstractDocumentBuilder { private Logger logger = Logger.getLogger(getClass().getName()); public static final int MAX_IMAGE_DIMENSION = 1024; public Document createDocument(BufferedImage image, String identifier) { assert (image != null); BufferedImage bimg = image; // Scaling image is especially with the correlogram features very important! // All images are scaled to guarantee a certain upper limit for indexing. if (Math.max(image.getHeight(), image.getWidth()) > MAX_IMAGE_DIMENSION) { bimg = ImageUtils.scaleImage(image, MAX_IMAGE_DIMENSION); } Document doc = null; logger.finer("Starting extraction from image [ColorLayout - fast]."); ColorLayout vd = new ColorLayout(); vd.extract(bimg); logger.fine("Extraction finished [ColorLayout - fast]."); doc = new Document(); doc.add(new Field(DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST, vd.getByteArrayRepresentation())); if (identifier != null) doc.add(new Field(DocumentBuilder.FIELD_NAME_IDENTIFIER, identifier, Field.Store.YES, Field.Index.NOT_ANALYZED)); return doc; } }
从源代码来看,其实主要就一个函数:createDocument(BufferedImage image, String identifier),该函数的流程如下所示:
1.如果输入的图像分辨率过大(在这里是大于1024),则将图像缩小。
2.新建一个ColorLayout类型的对象vd。
3.调用vd.extract()提取特征向量。
4.调用vd.getByteArrayRepresentation()获得特征向量。
5.将获得的特征向量加入Document,返回Document。
其实其他方法的DocumentBuilder的实现和颜色直方图的DocumentBuilder差不多。例如CEDDDocumentBuilder的源代码如下所示:
/* * This file is part of the LIRe project: http://www.semanticmetadata.net/lire * LIRe is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRe is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRe; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the following paper in any publication mentioning Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval 鈥� * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * * http://doi.acm.org/10.1145/1459359.1459577 * * Copyright statement: * ~~~~~~~~~~~~~~~~~~~~ * (c) 2002-2011 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire */ package net.semanticmetadata.lire.impl; import net.semanticmetadata.lire.AbstractDocumentBuilder; import net.semanticmetadata.lire.DocumentBuilder; import net.semanticmetadata.lire.imageanalysis.CEDD; import net.semanticmetadata.lire.utils.ImageUtils; import org.apache.lucene.document.Document; import org.apache.lucene.document.Field; import java.awt.image.BufferedImage; import java.util.logging.Logger; /** * Provides a faster way of searching based on byte arrays instead of Strings. The method * {@link net.semanticmetadata.lire.imageanalysis.CEDD#getByteArrayRepresentation()} is used * to generate the signature of the descriptor much faster. * User: Mathias Lux, mathias@juggle.at * Date: 12.03.2010 * Time: 13:21:35 * * @see GenericFastDocumentBuilder * @deprecated use GenericFastDocumentBuilder instead. */ public class CEDDDocumentBuilder extends AbstractDocumentBuilder { private Logger logger = Logger.getLogger(getClass().getName()); public static final int MAX_IMAGE_DIMENSION = 1024; public Document createDocument(BufferedImage image, String identifier) { assert (image != null); BufferedImage bimg = image; // Scaling image is especially with the correlogram features very important! // All images are scaled to guarantee a certain upper limit for indexing. if (Math.max(image.getHeight(), image.getWidth()) > MAX_IMAGE_DIMENSION) { bimg = ImageUtils.scaleImage(image, MAX_IMAGE_DIMENSION); } Document doc = null; logger.finer("Starting extraction from image [CEDD - fast]."); CEDD vd = new CEDD(); vd.extract(bimg); logger.fine("Extraction finished [CEDD - fast]."); doc = new Document(); doc.add(new Field(DocumentBuilder.FIELD_NAME_CEDD, vd.getByteArrayRepresentation())); if (identifier != null) doc.add(new Field(DocumentBuilder.FIELD_NAME_IDENTIFIER, identifier, Field.Store.YES, Field.Index.NOT_ANALYZED)); return doc; } }