=====================================================
LIRe源代码分析系列文章列表:
LIRe 源代码分析 2:基本接口(DocumentBuilder)
LIRe 源代码分析 3:基本接口(ImageSearcher)
LIRe 源代码分析 4:建立索引(DocumentBuilder)[以颜色布局为例]
LIRe 源代码分析 6:检索(ImageSearcher)[以颜色布局为例]
=====================================================
前几篇文章介绍了LIRe 的基本接口,以及建立索引的过程。现在来看一看它的检索部分(ImageSearcher)。不同的方法的检索功能的类各不相同,它们都位于“net.semanticmetadata.lire.impl”中,如下图所示:
在这里仅分析一个比较有代表性的:颜色布局。前文已经分析过ColorLayoutDocumentBuilder,在这里我们分析一下ColorLayoutImageSearcher。源代码如下:
/* * This file is part of the LIRe project: http://www.semanticmetadata.net/lire * LIRe is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * LIRe is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with LIRe; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * * We kindly ask you to refer the following paper in any publication mentioning Lire: * * Lux Mathias, Savvas A. Chatzichristofis. Lire: Lucene Image Retrieval 鈥� * An Extensible Java CBIR Library. In proceedings of the 16th ACM International * Conference on Multimedia, pp. 1085-1088, Vancouver, Canada, 2008 * * http://doi.acm.org/10.1145/1459359.1459577 * * Copyright statement: * -------------------- * (c) 2002-2011 by Mathias Lux (mathias@juggle.at) * http://www.semanticmetadata.net/lire */ package net.semanticmetadata.lire.impl; import net.semanticmetadata.lire.DocumentBuilder; import net.semanticmetadata.lire.ImageDuplicates; import net.semanticmetadata.lire.ImageSearchHits; import net.semanticmetadata.lire.imageanalysis.ColorLayout; import net.semanticmetadata.lire.imageanalysis.LireFeature; import org.apache.lucene.document.Document; import org.apache.lucene.index.IndexReader; import java.io.FileNotFoundException; import java.io.IOException; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.logging.Level; /** * Provides a faster way of searching based on byte arrays instead of Strings. The method * {@link net.semanticmetadata.lire.imageanalysis.ColorLayout#getByteArrayRepresentation()} is used * to generate the signature of the descriptor much faster. First tests have shown that this * implementation is up to 4 times faster than the implementation based on strings * (for 120,000 images) * <p/> * User: Mathias Lux, mathias@juggle.at * Date: 30.06 2011 */ public class ColorLayoutImageSearcher extends GenericImageSearcher { public ColorLayoutImageSearcher(int maxHits) { super(maxHits, ColorLayout.class, DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST); } protected float getDistance(Document d, LireFeature lireFeature) { float distance = 0f; ColorLayout lf; try { lf = (ColorLayout) descriptorClass.newInstance(); byte[] cls = d.getBinaryValue(fieldName); if (cls != null && cls.length > 0) { lf.setByteArrayRepresentation(cls); distance = lireFeature.getDistance(lf); } else { logger.warning("No feature stored in this document ..."); } } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return distance; } public ImageSearchHits search(Document doc, IndexReader reader) throws IOException { SimpleImageSearchHits searchHits = null; try { ColorLayout lireFeature = (ColorLayout) descriptorClass.newInstance(); byte[] cls = doc.getBinaryValue(fieldName); if (cls != null && cls.length > 0) lireFeature.setByteArrayRepresentation(cls); float maxDistance = findSimilar(reader, lireFeature); searchHits = new SimpleImageSearchHits(this.docs, maxDistance); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return searchHits; } public ImageDuplicates findDuplicates(IndexReader reader) throws IOException { // get the first document: SimpleImageDuplicates simpleImageDuplicates = null; try { if (!IndexReader.indexExists(reader.directory())) throw new FileNotFoundException("No index found at this specific location."); Document doc = reader.document(0); ColorLayout lireFeature = (ColorLayout) descriptorClass.newInstance(); byte[] cls = doc.getBinaryValue(fieldName); if (cls != null && cls.length > 0) lireFeature.setByteArrayRepresentation(cls); HashMap<Float, List<String>> duplicates = new HashMap<Float, List<String>>(); // find duplicates ... boolean hasDeletions = reader.hasDeletions(); int docs = reader.numDocs(); int numDuplicates = 0; for (int i = 0; i < docs; i++) { if (hasDeletions && reader.isDeleted(i)) { continue; } Document d = reader.document(i); float distance = getDistance(d, lireFeature); if (!duplicates.containsKey(distance)) { duplicates.put(distance, new LinkedList<String>()); } else { numDuplicates++; } duplicates.get(distance).add(d.getFieldable(DocumentBuilder.FIELD_NAME_IDENTIFIER).stringValue()); } if (numDuplicates == 0) return null; LinkedList<List<String>> results = new LinkedList<List<String>>(); for (float f : duplicates.keySet()) { if (duplicates.get(f).size() > 1) { results.add(duplicates.get(f)); } } simpleImageDuplicates = new SimpleImageDuplicates(results); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return simpleImageDuplicates; } }
源代码里面重要的函数有3个:
float getDistance(Document d, LireFeature lireFeature):
ImageSearchHits search(Document doc, IndexReader reader):检索。最核心函数。
ImageDuplicates findDuplicates(IndexReader reader):目前还没研究。
在这里忽然发现了一个问题:这里竟然只有一个Search()?!应该是有参数不同的3个Search()才对啊......
经过研究后发现,ColorLayoutImageSearcher继承了一个类——GenericImageSearcher,而不是继承AbstractImageSearcher。Search()方法的实现是在GenericImageSearcher中实现的。看来这个ColorLayoutImageSearcher还挺特殊的啊......
看一下GenericImageSearcher的源代码:
package net.semanticmetadata.lire.impl; import net.semanticmetadata.lire.AbstractImageSearcher; import net.semanticmetadata.lire.DocumentBuilder; import net.semanticmetadata.lire.ImageDuplicates; import net.semanticmetadata.lire.ImageSearchHits; import net.semanticmetadata.lire.imageanalysis.LireFeature; import net.semanticmetadata.lire.utils.ImageUtils; import org.apache.lucene.document.Document; import org.apache.lucene.index.IndexReader; import java.awt.image.BufferedImage; import java.io.FileNotFoundException; import java.io.IOException; import java.util.HashMap; import java.util.LinkedList; import java.util.List; import java.util.TreeSet; import java.util.logging.Level; import java.util.logging.Logger; /** * This file is part of the Caliph and Emir project: http://www.SemanticMetadata.net * <br>Date: 01.02.2006 * <br>Time: 00:17:02 * * @author Mathias Lux, mathias@juggle.at */ public class GenericImageSearcher extends AbstractImageSearcher { protected Logger logger = Logger.getLogger(getClass().getName()); Class<?> descriptorClass; String fieldName; private int maxHits = 10; protected TreeSet<SimpleResult> docs; public GenericImageSearcher(int maxHits, Class<?> descriptorClass, String fieldName) { this.maxHits = maxHits; docs = new TreeSet<SimpleResult>(); this.descriptorClass = descriptorClass; this.fieldName = fieldName; } public ImageSearchHits search(BufferedImage image, IndexReader reader) throws IOException { logger.finer("Starting extraction."); LireFeature lireFeature = null; SimpleImageSearchHits searchHits = null; try { lireFeature = (LireFeature) descriptorClass.newInstance(); // Scaling image is especially with the correlogram features very important! BufferedImage bimg = image; if (Math.max(image.getHeight(), image.getWidth()) > GenericDocumentBuilder.MAX_IMAGE_DIMENSION) { bimg = ImageUtils.scaleImage(image, GenericDocumentBuilder.MAX_IMAGE_DIMENSION); } lireFeature.extract(bimg); logger.fine("Extraction from image finished"); float maxDistance = findSimilar(reader, lireFeature); searchHits = new SimpleImageSearchHits(this.docs, maxDistance); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return searchHits; } /** * @param reader * @param lireFeature * @return the maximum distance found for normalizing. * @throws java.io.IOException */ protected float findSimilar(IndexReader reader, LireFeature lireFeature) throws IOException { float maxDistance = -1f, overallMaxDistance = -1f; boolean hasDeletions = reader.hasDeletions(); // clear result set ... docs.clear(); int docs = reader.numDocs(); for (int i = 0; i < docs; i++) { // bugfix by Roman Kern if (hasDeletions && reader.isDeleted(i)) { continue; } Document d = reader.document(i); float distance = getDistance(d, lireFeature); assert (distance >= 0); // calculate the overall max distance to normalize score afterwards if (overallMaxDistance < distance) { overallMaxDistance = distance; } // if it is the first document: if (maxDistance < 0) { maxDistance = distance; } // if the array is not full yet: if (this.docs.size() < maxHits) { this.docs.add(new SimpleResult(distance, d)); if (distance > maxDistance) maxDistance = distance; } else if (distance < maxDistance) { // if it is nearer to the sample than at least on of the current set: // remove the last one ... this.docs.remove(this.docs.last()); // add the new one ... this.docs.add(new SimpleResult(distance, d)); // and set our new distance border ... maxDistance = this.docs.last().getDistance(); } } return maxDistance; } protected float getDistance(Document d, LireFeature lireFeature) { float distance = 0f; LireFeature lf; try { lf = (LireFeature) descriptorClass.newInstance(); String[] cls = d.getValues(fieldName); if (cls != null && cls.length > 0) { lf.setStringRepresentation(cls[0]); distance = lireFeature.getDistance(lf); } else { logger.warning("No feature stored in this document!"); } } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return distance; } public ImageSearchHits search(Document doc, IndexReader reader) throws IOException { SimpleImageSearchHits searchHits = null; try { LireFeature lireFeature = (LireFeature) descriptorClass.newInstance(); String[] cls = doc.getValues(fieldName); if (cls != null && cls.length > 0) lireFeature.setStringRepresentation(cls[0]); float maxDistance = findSimilar(reader, lireFeature); searchHits = new SimpleImageSearchHits(this.docs, maxDistance); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return searchHits; } public ImageDuplicates findDuplicates(IndexReader reader) throws IOException { // get the first document: SimpleImageDuplicates simpleImageDuplicates = null; try { if (!IndexReader.indexExists(reader.directory())) throw new FileNotFoundException("No index found at this specific location."); Document doc = reader.document(0); LireFeature lireFeature = (LireFeature) descriptorClass.newInstance(); String[] cls = doc.getValues(fieldName); if (cls != null && cls.length > 0) lireFeature.setStringRepresentation(cls[0]); HashMap<Float, List<String>> duplicates = new HashMap<Float, List<String>>(); // find duplicates ... boolean hasDeletions = reader.hasDeletions(); int docs = reader.numDocs(); int numDuplicates = 0; for (int i = 0; i < docs; i++) { if (hasDeletions && reader.isDeleted(i)) { continue; } Document d = reader.document(i); float distance = getDistance(d, lireFeature); if (!duplicates.containsKey(distance)) { duplicates.put(distance, new LinkedList<String>()); } else { numDuplicates++; } duplicates.get(distance).add(d.getFieldable(DocumentBuilder.FIELD_NAME_IDENTIFIER).stringValue()); } if (numDuplicates == 0) return null; LinkedList<List<String>> results = new LinkedList<List<String>>(); for (float f : duplicates.keySet()) { if (duplicates.get(f).size() > 1) { results.add(duplicates.get(f)); } } simpleImageDuplicates = new SimpleImageDuplicates(results); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return simpleImageDuplicates; } public String toString() { return "GenericSearcher using " + descriptorClass.getName(); } }
下面来看看GenericImageSearcher中的search(BufferedImage image, IndexReader reader)函数的步骤(注:这个函数应该是用的最多的,输入一张图片,返回相似图片的结果集):
1.输入图片如果尺寸过大(大于1024),则调整尺寸。
2.使用extract()提取输入图片的特征值。
3.根据提取的特征值,使用findSimilar()查找相似的图片。
4.新建一个ImageSearchHits用于存储查找的结果。
5.返回ImageSearchHits
在这里要注意一点:
GenericImageSearcher中创建特定方法的类的时候,使用了如下形式:
LireFeature lireFeature = (LireFeature) descriptorClass.newInstance();
即接口的方式,而不是直接新建一个对象的方式,形如:
AutoColorCorrelogram acc = new AutoColorCorrelogram(CorrelogramDocumentBuilder.MAXIMUM_DISTANCE)
相比而言,更具有通用型。
在search()函数中,调用了一个函数findSimilar()。这个函数的作用是查找相似图片的,分析了一下它的步骤:
1.使用IndexReader获取所有的记录
2.遍历所有的记录,和当前输入的图片进行比较,使用getDistance()函数
3.获取maxDistance并返回
在findSimilar()中,又调用了一个getDistance(),该函数调用了具体检索方法的getDistance()函数。
下面我们来看一下ColorLayout类中的getDistance()函数:
public float getDistance(LireFeature descriptor) { if (!(descriptor instanceof ColorLayoutImpl)) return -1f; ColorLayoutImpl cl = (ColorLayoutImpl) descriptor; return (float) ColorLayoutImpl.getSimilarity(YCoeff, CbCoeff, CrCoeff, cl.YCoeff, cl.CbCoeff, cl.CrCoeff); }
发现其调用了ColorLayoutImpl类中的getSimilarity()函数:
public static double getSimilarity(int[] YCoeff1, int[] CbCoeff1, int[] CrCoeff1, int[] YCoeff2, int[] CbCoeff2, int[] CrCoeff2) { int numYCoeff1, numYCoeff2, CCoeff1, CCoeff2, YCoeff, CCoeff; //Numbers of the Coefficients of two descriptor values. numYCoeff1 = YCoeff1.length; numYCoeff2 = YCoeff2.length; CCoeff1 = CbCoeff1.length; CCoeff2 = CbCoeff2.length; //take the minimal Coeff-number YCoeff = Math.min(numYCoeff1, numYCoeff2); CCoeff = Math.min(CCoeff1, CCoeff2); setWeightingValues(); int j; int[] sum = new int[3]; int diff; sum[0] = 0; for (j = 0; j < YCoeff; j++) { diff = (YCoeff1[j] - YCoeff2[j]); sum[0] += (weightMatrix[0][j] * diff * diff); } sum[1] = 0; for (j = 0; j < CCoeff; j++) { diff = (CbCoeff1[j] - CbCoeff2[j]); sum[1] += (weightMatrix[1][j] * diff * diff); } sum[2] = 0; for (j = 0; j < CCoeff; j++) { diff = (CrCoeff1[j] - CrCoeff2[j]); sum[2] += (weightMatrix[2][j] * diff * diff); } //returns the distance between the two desciptor values return Math.sqrt(sum[0] * 1.0) + Math.sqrt(sum[1] * 1.0) + Math.sqrt(sum[2] * 1.0); }
由代码可见,getSimilarity()通过具体的算法,计算两张图片特征向量之间的相似度。