Description
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
-
CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
题意: 给一棵树,边有权,两种操作:1)修改一条边的权值 2) 询问某条路径上的最大边权
解法:树链剖分入门模板题,剖分后,对于每个询问,变成了求logN条线段上的最大值,很明显可以用线段树解决,复杂度为OlogNlogN
代码:280MS
#include<stdio.h> #include<string.h> #include<algorithm> #include<math.h> #include<iostream> #include<stdlib.h> #include<set> #include<map> #include<queue> #include<vector> #include<bitset> #pragma comment(linker, "/STACK:1024000000,1024000000") template <class T> bool scanff(T &ret){ //Faster Input char c; int sgn; T bit=0.1; if(c=getchar(),c==EOF) return 0; while(c!='-'&&c!='.'&&(c<'0'||c>'9')) c=getchar(); sgn=(c=='-')?-1:1; ret=(c=='-')?0:(c-'0'); while(c=getchar(),c>='0'&&c<='9') ret=ret*10+(c-'0'); if(c==' '||c=='\n'){ ret*=sgn; return 1; } while(c=getchar(),c>='0'&&c<='9') ret+=(c-'0')*bit,bit/=10; ret*=sgn; return 1; } #define inf 1073741823 #define llinf 4611686018427387903LL #define PI acos(-1.0) #define lth (th<<1) #define rth (th<<1|1) #define rep(i,a,b) for(int i=int(a);i<=int(b);i++) #define drep(i,a,b) for(int i=int(a);i>=int(b);i--) #define gson(i,root) for(int i=ptx[root];~i;i=ed[i].next) #define tdata int testnum;scanff(testnum);for(int cas=1;cas<=testnum;cas++) #define mem(x,val) memset(x,val,sizeof(x)) #define mkp(a,b) make_pair(a,b) #define findx(x) lower_bound(b+1,b+1+bn,x)-b #define pb(x) push_back(x) using namespace std; typedef long long ll; typedef pair<int,int> pii; #define NN 100010 int ptx[NN],lnum; struct edge{ int v,next,w; edge(){} edge(int v,int next,int w){ this->v=v; this->next=next; this->w=w; } }ed[NN*2]; void addline(int x,int y,int w){ ed[lnum]=edge(y,ptx[x],w); ptx[x]=lnum++; } int sz[NN],son[NN],f[NN],dep[NN]; int tid[NN],tn; int top[NN]; int a[NN],b[NN]; int getson(int x,int fa,int d){ int maxval=0; //这些数据千万不要忘记初始化,错了一万遍 son[x]=0; sz[x]=1; f[x]=fa; dep[x]=dep[fa]+1; gson(i,x){ int y=ed[i].v; if(y==fa)continue; sz[x]+=getson(y,x,d+1); a[y]=ed[i].w; if(sz[y]>maxval) maxval=sz[y],son[x]=y; } return sz[x]; } void getchain(int r,int x,int fa){ tid[x]=++tn; top[x]=r; if(son[x])getchain(r,son[x],x); gson(i,x){ int y=ed[i].v; if(y==fa||y==son[x])continue; getchain(y,y,x); } } struct segtree{ int val[NN*16],m; void init(int n){ for(m=1;m<n+3;m<<=1); rep(i,1,m<<1)val[i]=0; rep(i,1,n)val[i+m]=b[i]; drep(i,m-1,1)val[i]=max(val[i<<1],val[i<<1|1]); } void update(int pos,int v){ val[pos+m]=v; for(int i=(pos+m)>>1;i;i>>=1) val[i]=max(val[i<<1],val[i<<1|1]); } int query(int l,int r){ if(l>r)return -inf; int ans=-inf; for(l=l+m-1,r=r+m+1;l^r^1;l>>=1,r>>=1){ if(~l&1)ans=max(ans,val[l^1]); if(r&1) ans=max(ans,val[r^1]); } return ans; } }st; char op[11]; int main(){ int x,y,w,n; tdata{ if(cas>1)printf("\n"); scanff(n); lnum=tn=0; //tn记得初始化 rep(i,1,n)ptx[i]=-1; rep(i,1,n-1){ scanff(x);scanff(y);scanff(w); addline(x,y,w);addline(y,x,w); } getson(1,0,0); getchain(1,1,0); rep(i,1,n)b[tid[i]]=a[i]; st.init(n); while(scanf("%s",op)!=EOF){ if(op[0]=='C'){ scanff(x);scanff(y); int u=ed[x*2-2].v;//需要找到第I条边所连着的更深的点 int v=ed[x*2-1].v; if(dep[u]<dep[v])swap(u,v); st.update(tid[u],y); } if(op[0]=='Q'){ scanff(x);scanff(y); int ans=-inf; while(top[x]!=top[y]){ if(dep[top[x]]<dep[top[y]])swap(x,y); ans=max(ans,st.query(tid[top[x]],tid[x])); x=f[top[x]]; } if(x!=y){ if(dep[x]>dep[y])swap(x,y);//x即lca,统计边时不要计入 ans=max(ans,st.query(tid[x]+1,tid[y])); } printf("%d\n",ans); } if(op[0]=='D')break; } } }