基于FPGA的通信系统实验

时间:2023-03-08 15:34:33

伪随机信号发生器

1、伪随机信号发生器原理

伪随机信号发生器又叫PN序列发生器或者是m序列发生器。m序列是一种线性反馈寄存器序列,m序列的产生可以利用r级寄存器产生长度为2^r-1的m序列,该实验中采用3级寄存器产生7序列发生器。其原理框图如下:(实验中反馈的信号采用异或进行反馈)

基于FPGA的通信系统实验

仿真波形:

基于FPGA的通信系统实验

2、实验代码

module m_ser(

clk,

reset_n,

load,

m_ser_out

);

input clk;

input reset_n;

input load;

output m_ser_out;

wire clk;

wire reset_n;

wire load;

reg m_ser_out;

] m_code;

always@(posedge clk ornegedge reset_n)

begin

if(!reset_n)

begin

m_code<=3'b000;

m_ser_out<=1'b0;

end

else

if(load)

begin

m_code<=3'b001;//置数初始化

];

end

else

begin

];

和0进行异或然后放到0

];

end

end

endmodule

2ASK调制

1、原理

在通信系统中,有时经常需要进行二进制数字调制。2ASK即是二进制幅值键控,2ASK的调制原理就是:基带信号为"0"时,输出保持为"0",基带信号为"1"时,输出一个特定频率的信号,如下图所示:

基于FPGA的通信系统实验

原理图如下:

基于FPGA的通信系统实验

2、实验仿真

基于FPGA的通信系统实验

通过仿真结果可以看出,当data_in输入为高时,调制输出一定频率的信号,输入为低时,调制输出低电平。

3、实验代码

module ask(

clk,

reset_n,

data_in,

ask_code_out

);

input clk;

input reset_n;

input data_in;

output ask_code_out;

wire clk;

wire reset_n;

wire data_in;

]clk_cnt;

reg clk_div;

always@(posedge clk ornegedge reset_n)//产生分频信号

begin

if(!reset_n)

begin

clk_cnt<=3'd0;

clk_div<=1'b0;

end

else

if(clk_cnt==3'd1)

begin

clk_div<=~clk_div;

clk_cnt<=3'd0;

end

else

clk_cnt<=clk_cnt +1'b1;

end

assign ask_code_out=(data_in)? clk_div :1'b0;

endmodule

2FSK调制

1、原理

2FSK的调制原理是当基带信号为"0"时,输出一个固定频率为f1的信号,当基带信号为"1"时,输出一个固定频率为f2的信号。如下图所示:

基于FPGA的通信系统实验

原理图如下:

基于FPGA的通信系统实验

2、实验仿真

基于FPGA的通信系统实验

3、实验代码

module fsk_code(

clk,

m_ser_code_in,

fsk_code_sin_out

);

input clk;

input m_ser_code_in;

output fsk_code_sin_out;

wire clk;

wire m_ser_code_in;

]cnt;

wire f1;

reg f2;

always@(posedge clk )

begin

if(cnt==3'd2)

begin

cnt<=3'd0;

f2<=~f2;

end

else

cnt<=cnt+1'b1;

end

assign f1=clk;

assign fsk_code_sin_out=(m_ser_code_in)? f1:f2;

endmodule

2PSK调制

1、2PSK调制原理

基于FPGA的通信系统实验    在PSK调制时,载波的相位随调制信号状态不同而改变。如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,此时它们就处于"同相"状态;如果一个达到正最大值时,另一个达到负最大值,则称为"反相"。一般把信号振荡一次(一周)作为360度。如果一个波比另一个波相差半个周期,我们说两个波的相位差180度,也就是反相。当传输数字信号时,"1"码控制发0度相位,"0"码控制发180度相位。调制原理如下:

基于FPGA的通信系统实验

基于FPGA的通信系统实验

2、实验原理图说明

基于FPGA的通信系统实验

当伪随机信号发生器输出"1"时,PSK调制输出0度相位的正弦波形;当伪随机信号发生器输出"0"时,PSK调制输出180度相位的正弦波形;在这里,不详细说明"伪随机信号发生器"和"DDS信号发生器的原理",具体可以参考相应的章节。

3、仿真效果

采用ModelSim进行仿真:

基于FPGA的通信系统实验

4、实验代码

度相位,"0"码控制发180度相位

module psk_code(

clk,

m_ser_code_in,

dds_sin_data_in2,//10k正弦波

dds_sin_data_in3,//10k正弦波,相位相差180

psk_code_sin_out//

);

input clk;

input m_ser_code_in;

]dds_sin_data_in2;

]dds_sin_data_in3;

]psk_code_sin_out;

wire clk;

wire m_ser_code_in;

]dds_sin_data_in2;

]dds_sin_data_in3;

assign psk_code_sin_out=(m_ser_code_in)? dds_sin_data_in2:dds_sin_data_in3;

endmodule

2DPSK调制

1、2DPSK原理

在2PSK中,是利用载波相位的绝对数值来传送数字信息,因而称为绝对调相;2DPSK即是二进制差分相移键控,不利用载波相位传送数字信息,而是利用前后码元的相对相位变化传送数字信息。

实现相对调相的常用方法有:先对数字基带信号进行差分编码,将绝对编码转换成差分编码,然后再进行绝对调相。

将数字基带信号由绝对编码转成差分编码的方法为:将前一个输出码元和当前的输入码元进行异或,这样就可以产生相对码。

其原理图为:

基于FPGA的通信系统实验

2、实验设计

将伪随机信号发生器产生的m序列进行差分编码,再将相对码进行2DPSK调制,当出现"0"码则输出0度相位正弦波,"1"码控制发180度相位正弦波。

基于FPGA的通信系统实验

3、实验仿真

将绝对编码转为相对编码

基于FPGA的通信系统实验

2DPSK调制:

基于FPGA的通信系统实验

4、实验代码

度相位,"1"码控制发180度相位

module dpsk_code(

clk,

reset_n,//

m_ser_code_in,//PN序列输入

dpsk_code_out,//dpsk调制输出

dds_sin_data_in2,//10k正弦波

dds_sin_data_in3,//10k正弦波,相位相差180

dpsk_code_sin_out

);

input clk;

input reset_n;

input m_ser_code_in;

] dds_sin_data_in2;

] dds_sin_data_in3;

output dpsk_code_out;

]dpsk_code_sin_out;

wire clk;

wire reset_n;

wire m_ser_code_in;

] dds_sin_data_in2;

] dds_sin_data_in3;

reg dpsk_code_reg;

//差分编码

always@(posedge clk ornegedge reset_n)

begin

if(!reset_n)

begin

dpsk_code_reg<=1'b0;

end

else

dpsk_code_reg<=dpsk_code_reg ^ m_ser_code_in;//前一个码元与输入的码元进行异或

end

assign dpsk_code_out=dpsk_code_reg;

assign dpsk_code_sin_out=(dpsk_code_reg)? dds_sin_data_in3 : dds_sin_data_in2;

endmodule

每日推送不同科技解读,原创深耕解读当下科技,敬请关注微信公众号“科乎”。

基于FPGA的通信系统实验