昨天学习了一元的线性回归,今天看了下多元的,数据是从这里拿的http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv
from sklearn.linear_model import LinearRegression import numpy as np import pandas as pd import matplotlib.pyplot as plt data=pd.read_csv('C:/pyproject/Advertising.csv') y=data.loc[:, 'sales'].as_matrix(columns=None) y=np.array([y]).T #print(y) x=data.drop('sales', 1) x=x.loc[0:].as_matrix(columns=None) #print(x) l=LinearRegression() l.fit(x,y) print(l.coef_) print(l.predict([[60,60,60]])) print(l.score(x,y)) print(np.mean((l.predict(x)-y)**2))
多元就相当于是k1x1+k2x2+.....knxn=b,最后我们打印出的是系数,某个数据的预测值,相关系数R,均方误差
结果如下: