给定数组 如{5,8,3,1} 则有<5,3><5,1><8,3><8,1><3,1> 5个逆序对
给定数组 求其逆序对的个数
思路:归并排序 O(NlogN) 时间复杂度 O(N) 空间复杂度
代码:
int num = 0; //逆序对个数
void mergg(int ar[],int low,int mid,int high)
{
int* b = new int[high + 1]; //b[] 复制 ar[]
for (int i = low;i <= high;++i)
{
b[i] = ar[i];
}
int i = low,j = mid + 1,k = low;
while (i <= mid&&j <= high)
{
if (b[i] <= b[j])
{
ar[k++] = b[i++];
}
else
{
ar[k++] = b[j++];
num += mid - i + 1; //发生逆序,此时由于
//a[i..m]是已经有序了,那么a[i+1], a[i+2], ... a[m]都是大于a[j]的,
//都可以和a[j]组成逆序对,因此number += m - i + 1
}
}
while (i <= mid){ ar[k++] = b[i++]; } //这两种情况只会发生一种
while (j <= high){ ar[k++] = b[j++]; } //
delete []b;
}
void merge_sort(int ar[],int low,int high) //二路归并排序
{
if (low < high)
{
int mid = low + (high - low)/2;
merge_sort(ar,low,mid);
merge_sort(ar,mid + 1,high);
mergg(ar,low,mid,high);
}
}
PS: 还是基础最重要 掌握扎实的基础才是王道