前面一篇讲的单纯形方法的实现,但程序输入的必须是已经有初始基本可行解的单纯形表。
但实际问题中很少有现成的基本可行解,比如以下这个问题:
min f(x) = –3x1 +x2 + x3
s.t. x1 – 2x2 + x3 + x4=11
-4x1 + x2 + 2x3 - x5=3
-2x1+x3=1
xj>=0 , j=1,2,3,4,5
写成单纯形表就是
x1 | x2 | x3 | x4 | x5 | b | |
f | 3 | -1 | -1 | 0 | 0 | 0 |
1 | -2 | 1 | 1 | 0 | 11 | |
-4 | 1 | 2 | 0 | -1 | 3 | |
-2 | 0 | 1 | 0 | 0 | 1 |
很难找到秩为3的基阵,更不用说直接出现3阶单位阵了。在实际问题中,尤其是约束条件变多时,找到基阵甚至是判定A是否满秩都十分困难,因此在程序中引入大M法(Big M Method)来获得初始的基本可行解,这样我们能处理的问题就更加多样化了。
上篇已经说过,对于m*n的矩阵A来说,找到一个m*m 的满秩方阵就能得到基本可行解,但是在这么多列向量中怎样挑出m个线性无关的向量来组成一个满秩方阵呢?如果找起来麻烦的话,不如直接添加一个m阶单位阵来的方便!
大M法
大M法又称惩罚法,它是在目标函数中添加m个人工变量M*x(M是一个任意大的正数),同时在A矩阵中添加一个m阶单位矩阵。
这样一来新的A矩阵中就有了一个m*m满秩方阵,满足单纯形法求解的初始要求,但是若要得到最小值f(x),新添加的人工变量的值必然是0的,因为M可以是很大的数,如果Xn+1不为0,f(x)可能会很大,如果无法做到令人工变量取0值,那么原问题就无可行解。
需要注意的是,添加完人工变量之后,人工变量构成一组可行解的基变量,但单纯形初始矩阵要求基变量对应的检验数为0,故需要做行变换把基变量对应的检验数置0。
例如,本文开始引入的问题经过添加人工变量后变为
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | b | |
f | 3 | -1 | -1 | 0 | 0 | -M | -M | -M | 0 |
x6 | 1 | -2 | 1 | 1 | 0 | 1 | 0 | 0 | 11 |
x7 | -4 | 1 | 2 | 0 | -1 | 0 | 1 | 0 | 3 |
x8 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
再进行行变换把基变量x6,x7,x8对应的检验数置0,得到:
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | b | |
f | 3-5M | -1-M | -1+4M | 0 | 0 | 0 | 0 | 0 | 0 |
x6 | 1 | -2 | 1 | 1 | 0 | 1 | 0 | 0 | 11 |
x7 | -4 | 1 | 2 | 0 | -1 | 0 | 1 | 0 | 3 |
x8 | -2 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
进行完这步之后,就回到了单纯形法求解的基本问题,利用原来的算法继续计算就好了。
Matlab实现
BigM.m
function [ x,y ] = BigM( f,A,b )
%输入f是检验数的数组,1*n维
%输入A是约束矩阵, m*n维
%输入b是约束向量, 1*m维
%输出x是解向量
%输出y是最优解
%判断输入维数是否相符
%做初始单纯形表,加入M变量
[n,m]=size(A);%n行m列
M=10000;
S=[f -1*M*ones(1,n) 0;
A eye(n) b'];
format rat %将结果以分数表示
[n,m]=size(S);
%将人工变量的检验数置零
for k=1:n-1
S(1,:)=S(1,:)+S(k+1,:)*M;
end
%判断检验数 r<=0
r=find(S(1,1:m-1)>0);
len=length(r);
flag=0;
%有大于0的检验数则进入循环
while(len)
%检查非负检验数所对列向量元素是否都小于等于0
for k=1:length(r)
d=find(S(:,r(k))>0);
if(length(d)+1==2)
error('无最优解!!!')
%break;
end
end
%找到检验数中最大值
[Rk,j]=max(S(1,1:m-1));
%最大值所在列比值为正数且最小值br/a_rk
br=S(2:n,m)./S(2:n,j);
%把比值中的负数都变无穷
for p=1:length(br)
if(br(p)<0)br(p)=Inf;
end
end
[h,i]=min(br);%列向量比值最小值
% i+1为转轴元行号(在S中),j为转轴元列号
i=i+1;
%进行换基,转轴元置1
S(i,:)=S(i,:)./S(i,j);
%转轴元所在列其他元素都置0
for k=1:n
if(k~=i)
S(k,:)=S(k,:)-S(i,:)*S(k,j);
end
end
%判断检验数 r<=0
r=find(S(1,1:m-1)>0);
len=length(r);
% %调试用,控制循环步数
% if(len>0)flag=flag+1;end
% if(flag==2)break;end
% S
end
%检验数全部非正,找到最优解
%非基变量置0
x=zeros(1,m-1);
for i=1:m-1
%找到基变量
j=find(S(:,i)==1);%每列中1的个数
k=find(S(:,i)==0);%每列中0的个数
if((length(j)+1==2)&&(length(k)+1==n))
%i为基本元列号,j是行号
x(i)=S(j,m);
end
end
y=S(1,m);%最优解
S
end
测试程序:
f=[3 -1 -1 0 0];
A=[1 -2 1 1 0;
-4 1 2 0 -1;
-2 0 1 0 0 ];
b=[11 3 1 ];
[x,y]=BigM(f,A,b)
f=[5 2 3 -1];
A=[1 2 3 0 ;
2 1 5 0 ;
1 2 4 1 ];
b=[15 20 26];
[x,y]=BigM(f,A,b)
f=[5 10 0 0 0 ];
A=[1/14 1/7 1 0 0;
1/7 1/12 0 1 0;
1 1 0 0 1 ];
b=[1 1 8];
[x,y]=BigM(f,A,b)
[x,y]=Simplex(f,A,b)
计算结果:
大M法(Big M Method)的更多相关文章
-
自适应阈值二值化之最大类间方差法(大津法,OTSU)
最大类间方差法是由日本学者大津(Nobuyuki Otsu)于1979年提出的,是一种自适应的阈值确定的方法,又叫大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间 ...
-
大津法---OTSU算法
简介: 大津法(OTSU)是一种确定图像二值化分割阈值的算法,由日本学者大津于1979年提出.从大津法的原理上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进行图像二值化分割后,前景与背景 ...
-
自适应阈值分割—大津法(OTSU算法)C++实现
大津法是一种图像灰度自适应的阈值分割算法,是1979年由日本学者大津提出,并由他的名字命名的.大津法按照图像上灰度值的分布,将图像分成背景和前景两部分看待,前景就是我们要按照阈值分割出来的部分.背景和 ...
-
大O法时间复杂度计算
困惑的点——log,如何计算得出? ① 上限:用来表示该算法可能有的最高增长率. ② 大O表示法:如果某种算法的增长率上限(最差情况下)是f(n),那么说这种算法“在O(f(n))中”.n为输入规模. ...
-
OSTU大津法图像分割
OSTU图像分割 最大类间方差法,也成大津法OSTU,它是按图像的灰度特性,将图像分成背景和目标2部分.背景和目标之间的类间方差越大,说明构成图像的2部分的差别越大,当部分目标错分为背景或部分背景错分 ...
-
简单工厂法( Factory Method)
工厂方法 (Factory Method) Define an interface for creating an object ,but let subclasses decide which cl ...
-
关于大O法的几点解释
大O表示法指出算法有多快.例如,假设列表包含n个元素.简单查找需要检查每个元素,因此需要执行n次操作.使用大O表示法,这个运行时间为O(n).主要单位不是秒啊,大O表示法值得并非以秒为单位的速度,而是 ...
-
OTSU大津法对图像二值化
OTSU算法 (1)原理: 对于图像I(x,y),前景(即目标)和背景的分割阈值记作T,属于背景的像素个数占整幅图像的比例记为ω0,其平均灰度μ0:前景像素个数占整幅图像的比例为ω1,其平均灰度为μ1 ...
-
HDU 3374 最小/大表示法+KMP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3374 题意:给定一个串s,该串有strlen(s)个循环同构串,要求输出字典序最小的同构串的下标,字典 ...
随机推荐
-
Eplan PPE Pro-panel Electric fluid P8 2.4图文安装教程
Eplan ppe pro-panel electric fluid P8等多个最新2.4中文版本的安装,都是使用相同的虚拟驱动MultiKey,还是只有win32位的安装包,不过支持64位操作系统的 ...
-
Ubuntu环境下nutch2.2.1集成HBase0.94.25
nutch2.2.1集成HBase0.94.25 (详见:http://duguyiren3476.iteye.com/blog/2085973 ) 1. 修改nutch的hbase配置 //将自己的 ...
-
1034. Head of a Gang (30) -string离散化 -map应用 -并查集
题目如下: One way that the police finds the head of a gang is to check people's phone calls. If there is ...
-
LintCode 521.去除重复元素
LintCode 521.去除重复元素 描述 给一个整数数组,去除重复的元素. 你应该做这些事 1.在原数组上操作 2.将去除重复之后的元素放在数组的开头 3.返回去除重复元素之后的元素个数 挑战 1 ...
-
python———day02
算术运算符 >>>1+2 3 >>>3-2 1 >>>2*2 4 >>>5/2 2.5 >>>5//2 #整除 ...
-
java Files类和Paths类的用法 (转)
http://blog.csdn.net/u010889616/article/details/52694061 Java7中文件IO发生了很大的变化,专门引入了很多新的类: import java. ...
- [UE4]Actor的Destroyed事件
-
LINQ基本语句
一.什么是LINQ 1.定义:LINQ是Language Integrate Query的缩写,它在对象和数据之间建立一种对应关系,可以使用访问内存对象的方式查询数据集合. 2.特点:由于LINQ中查 ...
-
RocketMQ的客户端连接数调查
RocketMQ版本:3.4.6 ==问题现象== RocketMQ集群的某个topic,在一部分节点上消费有“断层”,这部分数据一致没办法消费. ==调查过程== 一顿操作猛如虎的调查之后发现, 该 ...
-
windows media server 组件安装后流媒体服务器启动失败
做好的web应用,去客户现场部署的时候发现流媒体服务器不能启动.(现场服务器系统为windows server2008 R2) 自己测试的时候搭建环境没什么问题.从来没有遇到安装windows med ...